Home
Class 12
MATHS
If A[(-1,5),(-3,2)], then adj A=...

If `A[(-1,5),(-3,2)]`, then adj A=

A

`[(2,3),(-5,-1)]`

B

`[(1,-5),(3,-2)]`

C

`[(2,-5),(3,-1)]`

D

`[(-2,5),(-3,1)]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the adjoint of the matrix \( A = \begin{pmatrix} -1 & 5 \\ -3 & 2 \end{pmatrix} \), we will follow the steps outlined below: ### Step 1: Identify the elements of the matrix The matrix \( A \) is a 2x2 matrix with elements: - \( a = -1 \) - \( b = 5 \) - \( c = -3 \) - \( d = 2 \) ### Step 2: Use the formula for the adjoint of a 2x2 matrix The adjoint of a 2x2 matrix \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by: \[ \text{adj}(A) = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \] ### Step 3: Substitute the values into the formula Now, substituting the values of \( a \), \( b \), \( c \), and \( d \): - \( d = 2 \) - \( -b = -5 \) (since \( b = 5 \)) - \( -c = 3 \) (since \( c = -3 \)) - \( a = -1 \) So we can write: \[ \text{adj}(A) = \begin{pmatrix} 2 & -5 \\ 3 & -1 \end{pmatrix} \] ### Step 4: Write the final answer Thus, the adjoint of the matrix \( A \) is: \[ \text{adj}(A) = \begin{pmatrix} 2 & -5 \\ 3 & -1 \end{pmatrix} \] ---
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    TARGET PUBLICATION|Exercise CLASSICAL THINKING (2.3 APPLICATION OF MATRICES)|3 Videos
  • MATRICES

    TARGET PUBLICATION|Exercise CLASSICAL THINKING (MISCELLANEOUS)|2 Videos
  • MATHEMATICAL LOGIC

    TARGET PUBLICATION|Exercise EVALUATION TEST|14 Videos
  • MHT-CET 2019 QUESTION PAPER

    TARGET PUBLICATION|Exercise Binomial Distribution|1 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(,1,2),(,2,1):}] then adj A=

If A[(2,0,3),(1,-1,2),(3,-2,0)] , then (adj A)A=

(b) If A^(-1)=[[3,1],[(-5)/(3),(2)/(3)]], then A.adj A is equal to

If A=[(5a, -b),(3,2)] and A adj A=A A^T, then 5a+b is equal to: (A) -1 (B) 5 (C) 4 (D) 13

If A={:[(1,2),(3,4)]:}," then: " adj(adjA)=

If A=[[-2,6],[-5,7]] , then adj A =

If A=[{:(2,5),(1,3):}] , find adj A .

If A=[{:(3,2),(1,4):}] then A. adj A is equal to :

If A=[(3,2,-1),(4,-1,2),(0,1,2)] then adj (adjA) is