Home
Class 12
MATHS
If A=[(a,0),(0,(1)/(b))], then A^(-1) =...

If `A=[(a,0),(0,(1)/(b))]`, then `A^(-1) =`

A

`[(-a,0),(0,-(1)/(b))]`

B

`[(-(1)/(a),0),(0,-(1)/(b))]`

C

`[((1)/(a),0),(0,b)]`

D

`[(-a,0),(0,b)]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{pmatrix} a & 0 \\ 0 & \frac{1}{b} \end{pmatrix} \), we will follow the steps below: ### Step 1: Identify the Matrix The matrix \( A \) is given as: \[ A = \begin{pmatrix} a & 0 \\ 0 & \frac{1}{b} \end{pmatrix} \] ### Step 2: Find the Determinant of Matrix \( A \) The determinant of a \( 2 \times 2 \) matrix \( \begin{pmatrix} p & q \\ r & s \end{pmatrix} \) is calculated as: \[ \text{det}(A) = ps - qr \] For our matrix \( A \): \[ \text{det}(A) = a \cdot \frac{1}{b} - 0 \cdot 0 = \frac{a}{b} \] ### Step 3: Find the Adjoint of Matrix \( A \) The adjoint of a \( 2 \times 2 \) matrix \( \begin{pmatrix} p & q \\ r & s \end{pmatrix} \) is given by: \[ \text{adj}(A) = \begin{pmatrix} s & -q \\ -r & p \end{pmatrix} \] For our matrix \( A \): \[ \text{adj}(A) = \begin{pmatrix} \frac{1}{b} & 0 \\ 0 & a \end{pmatrix} \] ### Step 4: Calculate the Inverse of Matrix \( A \) The inverse of matrix \( A \) is given by the formula: \[ A^{-1} = \frac{\text{adj}(A)}{\text{det}(A)} \] Substituting the values we found: \[ A^{-1} = \frac{1}{\frac{a}{b}} \begin{pmatrix} \frac{1}{b} & 0 \\ 0 & a \end{pmatrix} = \frac{b}{a} \begin{pmatrix} \frac{1}{b} & 0 \\ 0 & a \end{pmatrix} \] ### Step 5: Simplify the Inverse Now, we simplify the expression: \[ A^{-1} = \begin{pmatrix} \frac{b}{a} \cdot \frac{1}{b} & 0 \\ 0 & \frac{b}{a} \cdot a \end{pmatrix} = \begin{pmatrix} \frac{1}{a} & 0 \\ 0 & b \end{pmatrix} \] ### Final Result Thus, the inverse of the matrix \( A \) is: \[ A^{-1} = \begin{pmatrix} \frac{1}{a} & 0 \\ 0 & b \end{pmatrix} \] ---
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    TARGET PUBLICATION|Exercise CLASSICAL THINKING (2.3 APPLICATION OF MATRICES)|3 Videos
  • MATRICES

    TARGET PUBLICATION|Exercise CLASSICAL THINKING (MISCELLANEOUS)|2 Videos
  • MATHEMATICAL LOGIC

    TARGET PUBLICATION|Exercise EVALUATION TEST|14 Videos
  • MHT-CET 2019 QUESTION PAPER

    TARGET PUBLICATION|Exercise Binomial Distribution|1 Videos

Similar Questions

Explore conceptually related problems

If A=[(1,0,0),(0,1,0),(a,b,-1)] then A^2 is equal to (A) null matrix (B) unit matrix (C) -A (D) A

If {:A=[(1,0,0),(0,1,0),(a,b,-1)]:} , then A^2 is equal to

If A = [[ln(a-1),0],[0,ln(b-1)]] , then A^(-1) is :

If A=[(1,0),(0,1)] then A^4= (A) [(1,0),(0,1)] (B) [(1,1),(0,10)] (C) [(0,0),(1,1)] (D) [(0,1),(1,0)]

If A=[(1 ,0, 0),(0, 1,0),( a,b, -1)] , then A^2 is equal to (a) a null matrix (b) a unit matrix (c) A (d) A

(i) if A=[{:(1,0),(0,1):}],B=[{:(0,1),(1,0):}]and C=[{:(1,0),(0,1):}], then show that A^(2)=B^(2)=C^(2)=I_(2). (ii) if A=[{:(1,0),(1,1):}],B=[{:(2,0),(1,1):}]and C=[{:(-1,2),(3,1):}], then show that A(B+C)=AB+AC. (iii) if A=[{:(1,-1),(-1,1):}]and B=[{:(1,1),(1,1):}], then show that AB is a zero matrix.

If A = [(2,0),(0,1)] and B = [(1),(2)] then find the matrix X such that A^(-1) X = B