Home
Class 12
MATHS
If A=[[x,2,3],[-1,5,3]] ,B=[[1,-2,y],[1,...

If `A=[[x,2,3],[-1,5,3]]` ,`B=[[1,-2,y],[1,z,-2]]` and `C=[[3,0,1],[0,2,1]]`, also `A+B-C=O` then find `x,y,z`

Text Solution

AI Generated Solution

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING (Inverse off a matrix )|69 Videos
  • MATHEMATICAL LOGIC

    TARGET PUBLICATION|Exercise EVALUATION TEST|14 Videos
  • MHT-CET 2019 QUESTION PAPER

    TARGET PUBLICATION|Exercise Binomial Distribution|1 Videos

Similar Questions

Explore conceptually related problems

If |[x^3+1, x^2, x] , [y^3+1, y^2, y] , [z^3+1, z^2, z]|=0 and x, y, z are all different then prove that xyz=-1

If A=[(1,-2,0),(2,1,3),(0,-2,1)] and B=[(7,2,-6),(-2,1,-3),(-4,2,5)] , find AB Hence , solve the system of equation x-2y=10, 2x+y+3z=8 and -2y+z=7.

Knowledge Check

  • If O(0, 0, 0), A(x, 1, -1), B(0, y, 2) and C(2, 3, z) are coplanar, then

    A
    `6x+2y+4=0`
    B
    `xyz-6y+4=0`
    C
    `xyz+2y-6z=0`
    D
    `xyz-6x+2y+4=0`
  • Similar Questions

    Explore conceptually related problems

    Let A and B be two matrices of the same order 3xx3 such that A=[(-5,1,3),(7,1,-5),(1,-1,1)] and B=[(1,1,2),(3,2,1),(2,1,3)] x+y+2z=1, 3x+2y+z=7 and 2x+y+3z=2 be a system of equatons in x,y,z The value of AB and hence solve the system of equation (A) [(-5,1,5),(21,2,-5),(2,-1,3)] (B) [(4,0,0),(0,4,0),(0,0,4)] (C) [(0,0,1),(0,1,0),(1,0,0)] (D) [(2,-5,1),(1,3,6),(0,0,-0)]

    Given X=[(2,0,2),(1,0,-1)]Y=[(3,-1,0),(-2,0,-1)] , find Z such X+Y+Z=O

    If A=|(2,2,-4),(-4,2,-4),(2,-1,5)| and B=|(1,-1,0),(2,3,4),(0,1,2)| then find BA and use ths to sovle the system of equations y+2z=7, x-y=3 and 2x+3y+4z=17 .

    A=[[2,0,00,2,00,0,2]] and B=[[x_(1),y_(1),z_(1)x_(2),y_(2),z_(2)x_(3),y_(3),z_(3)]]

    If [[x,a,c] , [1,y,b] , [2,3,z]] is a skew symmetric matrix then (x+y+z+a+b+c)=

    If [(x+3,z+4,2y-7),(-6,a-1,0),(b-3,-21,0)] =[(0,6,3y-2),(-6,-3,2c+2),(2b+4,-21,0)] Find the values of a, b, c,x,y and z

    If x!=y!=za n d|[x,x^2, 1+x^3],[y ,y^2 ,1+y^3],[z, z^2, 1+z^3]|=0, then the value of x y z is a.1 b. 2 c. -1 d. 2