Home
Class 12
MATHS
Number of ordered pair (a,b) the set A =...

Number of ordered pair (a,b) the set `A = {1,2,3,4,5}` so that the functon `f(x)=(x^(3))/(3)+a/2 x ^(2)+ bx+10` is an injective mapping `AA x in R:`

A

`13

B

14

C

15

D

16

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the number of ordered pairs \((a, b)\) from the set \(A = \{1, 2, 3, 4, 5\}\) such that the function \[ f(x) = \frac{x^3}{3} + \frac{a}{2} x^2 + bx + 10 \] is an injective mapping, we will follow these steps: ### Step 1: Differentiate the Function First, we need to find the derivative of the function \(f(x)\): \[ f'(x) = x^2 + ax + b \] ### Step 2: Analyze the Nature of the Derivative For \(f(x)\) to be injective, \(f'(x)\) must not change sign. This means that \(f'(x)\) should either be always positive or always negative. A polynomial of degree 2 (like \(f'(x)\)) will not change sign if its discriminant is less than or equal to zero. ### Step 3: Calculate the Discriminant The discriminant \(D\) of the quadratic \(f'(x) = x^2 + ax + b\) is given by: \[ D = a^2 - 4b \] For \(f'(x)\) to not change sign, we need: \[ D \leq 0 \implies a^2 - 4b \leq 0 \implies a^2 \leq 4b \] ### Step 4: Find Valid Pairs \((a, b)\) Now we will find the ordered pairs \((a, b)\) from the set \(A\) such that \(a^2 \leq 4b\). 1. **For \(a = 1\)**: - \(1^2 \leq 4b \implies 1 \leq 4b \implies b \geq \frac{1}{4}\) - Possible values of \(b\): \(1, 2, 3, 4, 5\) (5 pairs) 2. **For \(a = 2\)**: - \(2^2 \leq 4b \implies 4 \leq 4b \implies b \geq 1\) - Possible values of \(b\): \(1, 2, 3, 4, 5\) (5 pairs) 3. **For \(a = 3\)**: - \(3^2 \leq 4b \implies 9 \leq 4b \implies b \geq \frac{9}{4} = 2.25\) - Possible values of \(b\): \(3, 4, 5\) (3 pairs) 4. **For \(a = 4\)**: - \(4^2 \leq 4b \implies 16 \leq 4b \implies b \geq 4\) - Possible values of \(b\): \(4, 5\) (2 pairs) 5. **For \(a = 5\)**: - \(5^2 \leq 4b \implies 25 \leq 4b \implies b \geq \frac{25}{4} = 6.25\) - No valid values of \(b\) since \(b\) must be in \(A\). ### Step 5: Count the Total Ordered Pairs Now we will sum the valid pairs: - For \(a = 1\): 5 pairs - For \(a = 2\): 5 pairs - For \(a = 3\): 3 pairs - For \(a = 4\): 2 pairs - For \(a = 5\): 0 pairs Total pairs = \(5 + 5 + 3 + 2 + 0 = 15\). ### Final Answer The total number of ordered pairs \((a, b)\) such that the function \(f(x)\) is an injective mapping is **15**. ---
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    VIKAS GUPTA (BLACK BOOK)|Exercise ONE OR MORE THAN ONE ANSWE IS/ARE CORRECT|25 Videos
  • FUNCTION

    VIKAS GUPTA (BLACK BOOK)|Exercise COMPREHENSION TYPE PROBLEMS|15 Videos
  • ELLIPSE

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-4 : Subjective Type Problems|2 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-4 : Subjective Type Problems|3 Videos

Similar Questions

Explore conceptually related problems

Suppose two numbers a and b are chosen randomly from the set {1, 2, 3, 4, 5, 6}. The probability that function f(x) = x^3+ ax^2 + bx is strictly increasing function on R is:

The number of ordered pairs (a,b) where a,b are integers satisfying the inequality min (x ^(2) +(a-b) x + (1-a-b)) gtmax (-x ^(2) +(a+b)x-(1+a+b)AA x in R, is :

The number of integral values of a for which f(x)=x^(3)+(a+2)x^(2)+3ax+5 is monotonic in AA x in R

Find the number ordered pairs (x,y) if x,y in{0,1,2,3,...,10} and if |x-y|>5

The mapping f:R rarr R given by f(x)=x^(3)+ax^(2)+bx+c is bijection if

Let f(x)=x^(3)+ax^(2)+bx+5 sin^(2)x be an increasing function on the set R. Then,

2.The number of ordered pair(s) (x,y) satisfying y=2sin x and y=5x^(2)+2x+3 is equal to- (1)0(2)1(3)2(4)oo

If the ordered pairs (x,-1) and (5,y) belong to the set {(a,b):b=2a-3}, find the values of x and y

If the function f(x)=x^(2)+bx+3 is not injective for values of x in the interval 0 le x le 1 then b lies in

If f:R to R be the function defined by f(x) = sin(3x+2) AA x in R. Then, f is invertible.

VIKAS GUPTA (BLACK BOOK)-FUNCTION -SUBJECTIVE TYPE PROBLEMS
  1. Number of ordered pair (a,b) the set A = {1,2,3,4,5} so that the funct...

    Text Solution

    |

  2. Let f(x) be a polynomial of degree 6 with leading coefficient 2009. Su...

    Text Solution

    |

  3. If f(x)=x^3- 3x+1, then the number of distinct real roots of the equat...

    Text Solution

    |

  4. If f(x+y+1)={sqrt(f(x))+sqrt(f(y))}^2 and f(0)=1AAx ,y in R ,d e t e ...

    Text Solution

    |

  5. If the domain of f(x) = sqrt (12-3^(x)-3^(3-x))+ sin ^(-1) ((2x)/(3 ...

    Text Solution

    |

  6. The number of elements in the range of functions: y=sin^(-1) [x^(2)+5/...

    Text Solution

    |

  7. The number of integers in the range of function f(x)= [sinx] + [cosx] ...

    Text Solution

    |

  8. If P (x) is polynomial of degree 4 such than P (-1)=P (1) =5 and P (-2...

    Text Solution

    |

  9. The number of integral vlaue (s) of k for which the curve y = sqrt ( ...

    Text Solution

    |

  10. Let the solution set of the equation sqrt([x+[x/2]])+[sqrt({x})+[x/3]]...

    Text Solution

    |

  11. For the real number x, let f (x)=(1)/( ""^(2011sqrt(1-x^(2011)))). Fi...

    Text Solution

    |

  12. Find the number of elements contained in the range of the function f (...

    Text Solution

    |

  13. Let f (x,y)= x^(2) - y^(2) and g (x,y)=2xy. such that (f ( x,y))^(2) -...

    Text Solution

    |

  14. Let f (x) = (x+5)/(sqrt(x^(2) +1) ) , then the smallest integral va...

    Text Solution

    |

  15. The number of integral values of m for which f : R to R ,f (x) = (x ^(...

    Text Solution

    |

  16. The number of roots of equation ((x-1)(x-3))/((x-2)(x-4))-e^(x)) ((x+1...

    Text Solution

    |

  17. Let f(x)=x^2-bx+c,b is an odd positive integer. Given that f(x)=0 ha...

    Text Solution

    |

  18. Let f(x) be a continuous function such that f(0) = 1 and f(x)=f(x/7)=x...

    Text Solution

    |

  19. If f (x) = 4x ^(3) -x ^(2) -2x +1 and g (x) = {{:(min {f(t): 0 le t le...

    Text Solution

    |

  20. If x=10 sum(r=3) ^(100) (1)/((r ^(2) -4)), then [x]= (where [.] deno...

    Text Solution

    |

  21. Let f x = (ax+b)/(xa+d), where a,b,c d are non zero If f (7) =7,f (11)...

    Text Solution

    |