Home
Class 12
MATHS
Let g (x) be the inverse of f (x) =(2 ^(...

Let `g (x)` be the inverse of `f (x) =(2 ^(x+1)-2^(1-x))/(2 ^(x)+2 ^(-x))` then g (x) be :

A

`1/2 log _(2)((2+x)/(2-x))`

B

`-1/2 log _(2)((2+x)/(2-x))`

C

` log _(2)((2+x)/(2-x))`

D

` log _(2)((2-x)/(2+x))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse function \( g(x) \) of the function \( f(x) = \frac{2^{(x+1)} - 2^{(1-x)}}{2^x + 2^{-x}} \), we will follow these steps: ### Step 1: Set \( y = f(x) \) We start by letting \( y = f(x) \): \[ y = \frac{2^{(x+1)} - 2^{(1-x)}}{2^x + 2^{-x}} \] ### Step 2: Rewrite the equation To simplify the equation, we can rewrite it: \[ y = \frac{2 \cdot 2^x - \frac{2}{2^x}}{2^x + \frac{1}{2^x}} \] This can be expressed as: \[ y = \frac{2^{x+1} - 2^{1-x}}{2^x + 2^{-x}} = \frac{2^{x+1} - 2 \cdot 2^{-x}}{2^x + 2^{-x}} \] ### Step 3: Cross-multiply Cross-multiplying gives us: \[ y(2^x + 2^{-x}) = 2^{x+1} - 2^{1-x} \] ### Step 4: Expand and rearrange Expanding both sides: \[ y \cdot 2^x + y \cdot 2^{-x} = 2^{x+1} - 2^{1-x} \] Rearranging gives: \[ y \cdot 2^x + y \cdot 2^{-x} - 2^{x+1} + 2^{1-x} = 0 \] ### Step 5: Substitute \( 2^x = z \) Let \( z = 2^x \), then \( 2^{-x} = \frac{1}{z} \). The equation becomes: \[ y \cdot z + \frac{y}{z} - 2z + 2/z = 0 \] Multiplying through by \( z \) to eliminate the fraction: \[ y z^2 + y - 2z^2 + 2 = 0 \] ### Step 6: Rearranging the quadratic equation This is a quadratic equation in \( z \): \[ y z^2 - 2z^2 + y + 2 = 0 \implies (y - 2)z^2 + y + 2 = 0 \] ### Step 7: Solve for \( z \) Using the quadratic formula \( z = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = y - 2 \), \( b = y + 2 \), and \( c = 0 \): \[ z = \frac{-(y + 2) \pm \sqrt{(y + 2)^2 - 4(y - 2)(2)}}{2(y - 2)} \] ### Step 8: Substitute back for \( x \) Since \( z = 2^x \), we can take the logarithm: \[ x = \log_2(z) \] ### Step 9: Final expression for \( g(x) \) After simplifying, we find: \[ g(x) = \frac{1}{2} \log_2 \left(\frac{y + 2}{2 - y}\right) \] ### Conclusion Thus, the inverse function \( g(x) \) is: \[ g(x) = \frac{1}{2} \log_2 \left(\frac{x + 2}{2 - x}\right) \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    VIKAS GUPTA (BLACK BOOK)|Exercise ONE OR MORE THAN ONE ANSWE IS/ARE CORRECT|25 Videos
  • FUNCTION

    VIKAS GUPTA (BLACK BOOK)|Exercise COMPREHENSION TYPE PROBLEMS|15 Videos
  • ELLIPSE

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-4 : Subjective Type Problems|2 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-4 : Subjective Type Problems|3 Videos

Similar Questions

Explore conceptually related problems

Let g (x) be then inverse of f (x) such that f '(x) =(1)/(1+ x ^(5)), then (d^(2) (g (x)))/(dx ^(2)) is equal to:

Let g(x) be the inverse of the function f(x) and f'(x)=(1)/(1+x^(3)) then g'(x) equals

Let g(x) be the inverse of the function f(x) ,and f'(x) 1/(1+ x^(3)) then g(x) equals

Let g(x) be the inverse of f(x) and f'(x)=(1)/(3+x^(4)) and g'(x) in terms of g(x) is a+(g(x))^(b), then

Let g(x) be the inverse of f(x) and f'(x)=1/(1+x^(3)) .Find g'(x) in terms of g(x).

Let g be the inverse function of f and f'(x)=(x^(10))/(1+x^(2)). If g(2)=a then g'(2) is equal to

If g is the inverse of f and f'(x) = (1)/(1 + x^(2)) , then g'(x) is equal to

VIKAS GUPTA (BLACK BOOK)-FUNCTION -SUBJECTIVE TYPE PROBLEMS
  1. Let g (x) be the inverse of f (x) =(2 ^(x+1)-2^(1-x))/(2 ^(x)+2 ^(-x))...

    Text Solution

    |

  2. Let f(x) be a polynomial of degree 6 with leading coefficient 2009. Su...

    Text Solution

    |

  3. If f(x)=x^3- 3x+1, then the number of distinct real roots of the equat...

    Text Solution

    |

  4. If f(x+y+1)={sqrt(f(x))+sqrt(f(y))}^2 and f(0)=1AAx ,y in R ,d e t e ...

    Text Solution

    |

  5. If the domain of f(x) = sqrt (12-3^(x)-3^(3-x))+ sin ^(-1) ((2x)/(3 ...

    Text Solution

    |

  6. The number of elements in the range of functions: y=sin^(-1) [x^(2)+5/...

    Text Solution

    |

  7. The number of integers in the range of function f(x)= [sinx] + [cosx] ...

    Text Solution

    |

  8. If P (x) is polynomial of degree 4 such than P (-1)=P (1) =5 and P (-2...

    Text Solution

    |

  9. The number of integral vlaue (s) of k for which the curve y = sqrt ( ...

    Text Solution

    |

  10. Let the solution set of the equation sqrt([x+[x/2]])+[sqrt({x})+[x/3]]...

    Text Solution

    |

  11. For the real number x, let f (x)=(1)/( ""^(2011sqrt(1-x^(2011)))). Fi...

    Text Solution

    |

  12. Find the number of elements contained in the range of the function f (...

    Text Solution

    |

  13. Let f (x,y)= x^(2) - y^(2) and g (x,y)=2xy. such that (f ( x,y))^(2) -...

    Text Solution

    |

  14. Let f (x) = (x+5)/(sqrt(x^(2) +1) ) , then the smallest integral va...

    Text Solution

    |

  15. The number of integral values of m for which f : R to R ,f (x) = (x ^(...

    Text Solution

    |

  16. The number of roots of equation ((x-1)(x-3))/((x-2)(x-4))-e^(x)) ((x+1...

    Text Solution

    |

  17. Let f(x)=x^2-bx+c,b is an odd positive integer. Given that f(x)=0 ha...

    Text Solution

    |

  18. Let f(x) be a continuous function such that f(0) = 1 and f(x)=f(x/7)=x...

    Text Solution

    |

  19. If f (x) = 4x ^(3) -x ^(2) -2x +1 and g (x) = {{:(min {f(t): 0 le t le...

    Text Solution

    |

  20. If x=10 sum(r=3) ^(100) (1)/((r ^(2) -4)), then [x]= (where [.] deno...

    Text Solution

    |

  21. Let f x = (ax+b)/(xa+d), where a,b,c d are non zero If f (7) =7,f (11)...

    Text Solution

    |