Home
Class 12
MATHS
The function f (x)={((x ^(2n)))/((x ^(2n...

The function `f (x)={((x ^(2n)))/((x ^(2n) sgn x)^(2n+1))((e ^(1/x)-e ^(-1/x))/(e ^(1/x)+e ^(-(1)/(x))))x ne0 n in N` is:

A

Odd function

B

Even function

C

Neither odd nor even function

D

Constant function

Text Solution

AI Generated Solution

The correct Answer is:
To determine the nature of the function \( f(x) \) given by \[ f(x) = \frac{x^{2n}}{(x^{2n} \cdot \text{sgn}(x))^{2n+1}} \cdot \frac{e^{1/x} - e^{-1/x}}{e^{1/x} + e^{-1/x}} \quad (x \neq 0, n \in \mathbb{N}), \] we will analyze the function step by step. ### Step 1: Understanding the Sign Function The sign function, \( \text{sgn}(x) \), is defined as follows: - \( \text{sgn}(x) = 1 \) if \( x > 0 \) - \( \text{sgn}(x) = 0 \) if \( x = 0 \) (not applicable here since \( x \neq 0 \)) - \( \text{sgn}(x) = -1 \) if \( x < 0 \) ### Step 2: Splitting the Function into Cases We will consider two cases based on the sign of \( x \). #### Case 1: \( x > 0 \) For \( x > 0 \): - \( \text{sgn}(x) = 1 \) Thus, the function becomes: \[ f(x) = \frac{x^{2n}}{(x^{2n} \cdot 1)^{2n+1}} \cdot \frac{e^{1/x} - e^{-1/x}}{e^{1/x} + e^{-1/x}} = \frac{x^{2n}}{(x^{2n})^{2n+1}} \cdot \frac{e^{1/x} - e^{-1/x}}{e^{1/x} + e^{-1/x}} \] This simplifies to: \[ f(x) = \frac{x^{2n}}{x^{2n(2n+1)}} \cdot \frac{e^{1/x} - e^{-1/x}}{e^{1/x} + e^{-1/x}} = \frac{1}{x^{2n(2n+1) - 2n}} \cdot \frac{e^{1/x} - e^{-1/x}}{e^{1/x} + e^{-1/x}} = \frac{1}{x^{2n^2 + 2n}} \cdot \frac{e^{1/x} - e^{-1/x}}{e^{1/x} + e^{-1/x}} \] #### Case 2: \( x < 0 \) For \( x < 0 \): - \( \text{sgn}(x) = -1 \) Thus, the function becomes: \[ f(x) = \frac{x^{2n}}{(x^{2n} \cdot (-1))^{2n+1}} \cdot \frac{e^{1/x} - e^{-1/x}}{e^{1/x} + e^{-1/x}} = \frac{x^{2n}}{(-x^{2n})^{2n+1}} \cdot \frac{e^{1/x} - e^{-1/x}}{e^{1/x} + e^{-1/x}} \] This simplifies to: \[ f(x) = \frac{x^{2n}}{(-1)^{2n+1} \cdot x^{2n(2n+1)}} \cdot \frac{e^{1/x} - e^{-1/x}}{e^{1/x} + e^{-1/x}} = -\frac{x^{2n}}{x^{2n(2n+1)}} \cdot \frac{e^{1/x} - e^{-1/x}}{e^{1/x} + e^{-1/x}} = -\frac{1}{x^{2n^2 + 2n}} \cdot \frac{e^{1/x} - e^{-1/x}}{e^{1/x} + e^{-1/x}} \] ### Step 3: Compare \( f(-x) \) and \( -f(x) \) Now, we will compare \( f(-x) \) and \( -f(x) \): - For \( x > 0 \), \( f(-x) = -\frac{1}{(-x)^{2n^2 + 2n}} \cdot \frac{e^{-1/x} - e^{1/x}}{e^{-1/x} + e^{1/x}} = -f(x) \) This shows that \( f(-x) = -f(x) \) for \( x > 0 \). ### Conclusion Since \( f(-x) = -f(x) \), the function \( f(x) \) is an **odd function**.
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    VIKAS GUPTA (BLACK BOOK)|Exercise ONE OR MORE THAN ONE ANSWE IS/ARE CORRECT|25 Videos
  • FUNCTION

    VIKAS GUPTA (BLACK BOOK)|Exercise COMPREHENSION TYPE PROBLEMS|15 Videos
  • ELLIPSE

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-4 : Subjective Type Problems|2 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-4 : Subjective Type Problems|3 Videos

Similar Questions

Explore conceptually related problems

int (e ^ (x) + (1) / (e ^ (n))) ^ (2)

lim_(x->oo)(e^x((2^(x^n))^(1/(e^(x)))-(3^(x^n))^(1/(e^(x)))))/(x^n), n in N, is equal to

The function f(x)={{:(,(e^(1/x)-1)/(e^(1/x)+1),x ne 0),(,0,x=0):}

The inverse of the function f(x)=(e^(x)-2e^(-x))/(e^(x)+2e^(-x))+1 is

Domain of the function f(x)=log_(x+2) ^(x^(2)-1)+sqrt(e^(x)-e^(2))+sqrt(sgn(x)) is

The value of lim_(x rarr oo)((2^(x^(n)))^((1)/(e^(x)))-(3^(x^(n)))^((1)/(e^(x))))/(x^(n))

lim_ (x rarr1) (nx ^ (n + 1) -nx ^ (n) +1) / ((e ^ (x) -e ^ (2)) sin pi x)

If f(x) = {{:(x((e^(1//x) - e^(-1//x))/(e^(1//x)+e^(1//x)))",",x ne 0),(" "0",",x = 0):} , then at x = 0 f(x) is

VIKAS GUPTA (BLACK BOOK)-FUNCTION -SUBJECTIVE TYPE PROBLEMS
  1. The function f (x)={((x ^(2n)))/((x ^(2n) sgn x)^(2n+1))((e ^(1/x)-e ^...

    Text Solution

    |

  2. Let f(x) be a polynomial of degree 6 with leading coefficient 2009. Su...

    Text Solution

    |

  3. If f(x)=x^3- 3x+1, then the number of distinct real roots of the equat...

    Text Solution

    |

  4. If f(x+y+1)={sqrt(f(x))+sqrt(f(y))}^2 and f(0)=1AAx ,y in R ,d e t e ...

    Text Solution

    |

  5. If the domain of f(x) = sqrt (12-3^(x)-3^(3-x))+ sin ^(-1) ((2x)/(3 ...

    Text Solution

    |

  6. The number of elements in the range of functions: y=sin^(-1) [x^(2)+5/...

    Text Solution

    |

  7. The number of integers in the range of function f(x)= [sinx] + [cosx] ...

    Text Solution

    |

  8. If P (x) is polynomial of degree 4 such than P (-1)=P (1) =5 and P (-2...

    Text Solution

    |

  9. The number of integral vlaue (s) of k for which the curve y = sqrt ( ...

    Text Solution

    |

  10. Let the solution set of the equation sqrt([x+[x/2]])+[sqrt({x})+[x/3]]...

    Text Solution

    |

  11. For the real number x, let f (x)=(1)/( ""^(2011sqrt(1-x^(2011)))). Fi...

    Text Solution

    |

  12. Find the number of elements contained in the range of the function f (...

    Text Solution

    |

  13. Let f (x,y)= x^(2) - y^(2) and g (x,y)=2xy. such that (f ( x,y))^(2) -...

    Text Solution

    |

  14. Let f (x) = (x+5)/(sqrt(x^(2) +1) ) , then the smallest integral va...

    Text Solution

    |

  15. The number of integral values of m for which f : R to R ,f (x) = (x ^(...

    Text Solution

    |

  16. The number of roots of equation ((x-1)(x-3))/((x-2)(x-4))-e^(x)) ((x+1...

    Text Solution

    |

  17. Let f(x)=x^2-bx+c,b is an odd positive integer. Given that f(x)=0 ha...

    Text Solution

    |

  18. Let f(x) be a continuous function such that f(0) = 1 and f(x)=f(x/7)=x...

    Text Solution

    |

  19. If f (x) = 4x ^(3) -x ^(2) -2x +1 and g (x) = {{:(min {f(t): 0 le t le...

    Text Solution

    |

  20. If x=10 sum(r=3) ^(100) (1)/((r ^(2) -4)), then [x]= (where [.] deno...

    Text Solution

    |

  21. Let f x = (ax+b)/(xa+d), where a,b,c d are non zero If f (7) =7,f (11)...

    Text Solution

    |