Home
Class 12
MATHS
The domain of function f (x) = log ([x+(...

The domain of function `f (x) = log _([x+(1)/(2)])(2x ^(2) + x-1), ` where `[.]` denotes the greatest integer function is :

A

`[(3)/(2), oo)`

B

`(2,oo)`

C

`(-(1)/(2), oo)-{(1)/(2)}`

D

`((1)/(2), 1) uu (1,oo)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \log_{(x + \frac{1}{2})}(2x^2 + x - 1) \), where \([.]\) denotes the greatest integer function, we need to ensure that the logarithm is defined. ### Step 1: Conditions for the logarithm The logarithm \( \log_b(a) \) is defined under the following conditions: 1. The base \( b \) must be greater than 0 and not equal to 1. 2. The argument \( a \) must be greater than 0. ### Step 2: Applying the conditions to our function For our function: - The base is \( x + \frac{1}{2} \) - The argument is \( 2x^2 + x - 1 \) We need to satisfy the following conditions: 1. \( x + \frac{1}{2} > 0 \) 2. \( x + \frac{1}{2} \neq 1 \) 3. \( 2x^2 + x - 1 > 0 \) ### Step 3: Solve the inequalities #### Condition 1: \( x + \frac{1}{2} > 0 \) \[ x + \frac{1}{2} > 0 \implies x > -\frac{1}{2} \] #### Condition 2: \( x + \frac{1}{2} \neq 1 \) \[ x + \frac{1}{2} \neq 1 \implies x \neq \frac{1}{2} \] #### Condition 3: \( 2x^2 + x - 1 > 0 \) To solve this quadratic inequality, we first find the roots of the equation \( 2x^2 + x - 1 = 0 \) using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 2 \cdot (-1)}}{2 \cdot 2} = \frac{-1 \pm \sqrt{1 + 8}}{4} = \frac{-1 \pm 3}{4} \] This gives us the roots: \[ x = \frac{2}{4} = \frac{1}{2} \quad \text{and} \quad x = \frac{-4}{4} = -1 \] Now we can analyze the sign of \( 2x^2 + x - 1 \) in the intervals determined by these roots: \( (-\infty, -1) \), \( (-1, \frac{1}{2}) \), and \( (\frac{1}{2}, \infty) \). - For \( x < -1 \): Choose \( x = -2 \) \[ 2(-2)^2 + (-2) - 1 = 8 - 2 - 1 = 5 > 0 \] - For \( -1 < x < \frac{1}{2} \): Choose \( x = 0 \) \[ 2(0)^2 + (0) - 1 = -1 < 0 \] - For \( x > \frac{1}{2} \): Choose \( x = 1 \) \[ 2(1)^2 + (1) - 1 = 2 + 1 - 1 = 2 > 0 \] Thus, \( 2x^2 + x - 1 > 0 \) in the intervals \( (-\infty, -1) \) and \( (\frac{1}{2}, \infty) \). ### Step 4: Combine the conditions Now we combine the conditions: 1. From \( x + \frac{1}{2} > 0 \): \( x > -\frac{1}{2} \) 2. From \( x + \frac{1}{2} \neq 1 \): \( x \neq \frac{1}{2} \) 3. From \( 2x^2 + x - 1 > 0 \): \( x \in (-\infty, -1) \cup (\frac{1}{2}, \infty) \) The intersection of these conditions gives us: - From \( (-\infty, -1) \) and \( x > -\frac{1}{2} \): The valid interval is \( (-\frac{1}{2}, -1) \) (but this is empty since there are no numbers between \(-\frac{1}{2}\) and \(-1\)). - From \( (\frac{1}{2}, \infty) \) and \( x \neq \frac{1}{2} \): The valid interval is \( (\frac{1}{2}, \infty) \). ### Final Domain Thus, the domain of the function \( f(x) \) is: \[ \boxed{(\frac{1}{2}, \infty)} \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    VIKAS GUPTA (BLACK BOOK)|Exercise ONE OR MORE THAN ONE ANSWE IS/ARE CORRECT|25 Videos
  • FUNCTION

    VIKAS GUPTA (BLACK BOOK)|Exercise COMPREHENSION TYPE PROBLEMS|15 Videos
  • ELLIPSE

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-4 : Subjective Type Problems|2 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-4 : Subjective Type Problems|3 Videos

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=log_([x+(1)/(2)])|x^(2)-x-6|* where [] denotes the greatest integer function,is

If f(x)=[2x], where [.] denotes the greatest integer function,then

The domain of the function f(x)=(log_(4)(5-[x-1]-[x]^(2)))/(x^(2)+x-2) is (where [x] denotes greatest integer function)

f(x)=log(x-[x]), which [,] denotes the greatest integer function.

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

The range of the function f(x)=[log_((2)/(3))|(x^(2)-1)/(x^(2)+1)|] where [-1 denotes the greatest integer function is

f(x)=sin^(-1)[log_(2)((x^(2))/(2))] where [.] denotes the greatest integer function.

The domain of the function f(x)=log_(3)log_(1//3)(x^(2)+10x+25)+(1)/([x]+5) (where [.] denotes the greatest integer function) is

The domain of f(x)=log_(x-(1)/(2))(x^(2)-2x-3) wherell 20. denotes greatest interger function is

The function f(x)=[x^(2)]+[-x]^(2) , where [.] denotes the greatest integer function, is

VIKAS GUPTA (BLACK BOOK)-FUNCTION -SUBJECTIVE TYPE PROBLEMS
  1. The domain of function f (x) = log ([x+(1)/(2)])(2x ^(2) + x-1), whe...

    Text Solution

    |

  2. Let f(x) be a polynomial of degree 6 with leading coefficient 2009. Su...

    Text Solution

    |

  3. If f(x)=x^3- 3x+1, then the number of distinct real roots of the equat...

    Text Solution

    |

  4. If f(x+y+1)={sqrt(f(x))+sqrt(f(y))}^2 and f(0)=1AAx ,y in R ,d e t e ...

    Text Solution

    |

  5. If the domain of f(x) = sqrt (12-3^(x)-3^(3-x))+ sin ^(-1) ((2x)/(3 ...

    Text Solution

    |

  6. The number of elements in the range of functions: y=sin^(-1) [x^(2)+5/...

    Text Solution

    |

  7. The number of integers in the range of function f(x)= [sinx] + [cosx] ...

    Text Solution

    |

  8. If P (x) is polynomial of degree 4 such than P (-1)=P (1) =5 and P (-2...

    Text Solution

    |

  9. The number of integral vlaue (s) of k for which the curve y = sqrt ( ...

    Text Solution

    |

  10. Let the solution set of the equation sqrt([x+[x/2]])+[sqrt({x})+[x/3]]...

    Text Solution

    |

  11. For the real number x, let f (x)=(1)/( ""^(2011sqrt(1-x^(2011)))). Fi...

    Text Solution

    |

  12. Find the number of elements contained in the range of the function f (...

    Text Solution

    |

  13. Let f (x,y)= x^(2) - y^(2) and g (x,y)=2xy. such that (f ( x,y))^(2) -...

    Text Solution

    |

  14. Let f (x) = (x+5)/(sqrt(x^(2) +1) ) , then the smallest integral va...

    Text Solution

    |

  15. The number of integral values of m for which f : R to R ,f (x) = (x ^(...

    Text Solution

    |

  16. The number of roots of equation ((x-1)(x-3))/((x-2)(x-4))-e^(x)) ((x+1...

    Text Solution

    |

  17. Let f(x)=x^2-bx+c,b is an odd positive integer. Given that f(x)=0 ha...

    Text Solution

    |

  18. Let f(x) be a continuous function such that f(0) = 1 and f(x)=f(x/7)=x...

    Text Solution

    |

  19. If f (x) = 4x ^(3) -x ^(2) -2x +1 and g (x) = {{:(min {f(t): 0 le t le...

    Text Solution

    |

  20. If x=10 sum(r=3) ^(100) (1)/((r ^(2) -4)), then [x]= (where [.] deno...

    Text Solution

    |

  21. Let f x = (ax+b)/(xa+d), where a,b,c d are non zero If f (7) =7,f (11)...

    Text Solution

    |