Home
Class 12
MATHS
Let f :R -{(3)/(2)}to R, f (x) = (3x+5)/...

Let `f :R -{(3)/(2)}to R, f (x) = (3x+5)/(2x-3).Let f _(1) (x)=f (x), f_(n) (x)=f (f _(n-1) (x)))` for ` pige 2, n in N,` then `f _(2008) (x)+ f _(2009) (x)=`

A

`(2x ^(2) +5)/(2x-3)`

B

`(x^(2) +5)/(2x-3)`

C

`(2x ^(2) -5)/(2x-3)`

D

`(x ^(2) -5)/(2x-3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( f_{2008}(x) + f_{2009}(x) \) where \( f(x) = \frac{3x + 5}{2x - 3} \). ### Step 1: Calculate \( f(f(x)) \) We start by finding \( f(f(x)) \). 1. Substitute \( f(x) \) into itself: \[ f(f(x)) = f\left(\frac{3x + 5}{2x - 3}\right) \] This means replacing \( x \) in \( f(x) \) with \( \frac{3x + 5}{2x - 3} \). 2. Calculate \( f(f(x)) \): \[ f\left(\frac{3x + 5}{2x - 3}\right) = \frac{3\left(\frac{3x + 5}{2x - 3}\right) + 5}{2\left(\frac{3x + 5}{2x - 3}\right) - 3} \] 3. Simplify the numerator: \[ = \frac{\frac{9x + 15}{2x - 3} + 5}{2\left(\frac{3x + 5}{2x - 3}\right) - 3} \] \[ = \frac{\frac{9x + 15 + 5(2x - 3)}{2x - 3}}{2\left(\frac{3x + 5}{2x - 3}\right) - 3} \] \[ = \frac{\frac{9x + 15 + 10x - 15}{2x - 3}}{2\left(\frac{3x + 5}{2x - 3}\right) - 3} \] \[ = \frac{\frac{19x}{2x - 3}}{2\left(\frac{3x + 5}{2x - 3}\right) - 3} \] 4. Simplify the denominator: \[ = \frac{19x}{\frac{6x + 10 - 6x + 9}{2x - 3}} = \frac{19x(2x - 3)}{19} = x \] Thus, we find that: \[ f(f(x)) = x \] ### Step 2: Determine \( f_{n}(x) \) From the result \( f(f(x)) = x \), we can conclude: - \( f_{1}(x) = f(x) \) - \( f_{2}(x) = f(f(x)) = x \) - \( f_{3}(x) = f(f(f(x))) = f(x) \) - \( f_{4}(x) = f(f(f(f(x)))) = x \) This pattern shows that: - If \( n \) is odd, \( f_{n}(x) = f(x) \) - If \( n \) is even, \( f_{n}(x) = x \) ### Step 3: Calculate \( f_{2008}(x) + f_{2009}(x) \) Now we can evaluate: - \( f_{2008}(x) = x \) (since 2008 is even) - \( f_{2009}(x) = f(x) \) (since 2009 is odd) Thus: \[ f_{2008}(x) + f_{2009}(x) = x + f(x) = x + \frac{3x + 5}{2x - 3} \] ### Step 4: Combine the expressions Combine the two terms: \[ f_{2008}(x) + f_{2009}(x) = x + \frac{3x + 5}{2x - 3} \] To combine, we need a common denominator: \[ = \frac{x(2x - 3)}{2x - 3} + \frac{3x + 5}{2x - 3} \] \[ = \frac{2x^2 - 3x + 3x + 5}{2x - 3} \] \[ = \frac{2x^2 + 5}{2x - 3} \] ### Final Answer \[ f_{2008}(x) + f_{2009}(x) = \frac{2x^2 + 5}{2x - 3} \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    VIKAS GUPTA (BLACK BOOK)|Exercise ONE OR MORE THAN ONE ANSWE IS/ARE CORRECT|25 Videos
  • FUNCTION

    VIKAS GUPTA (BLACK BOOK)|Exercise COMPREHENSION TYPE PROBLEMS|15 Videos
  • ELLIPSE

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-4 : Subjective Type Problems|2 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-4 : Subjective Type Problems|3 Videos

Similar Questions

Explore conceptually related problems

Let f : R to R : f (x) =(3-x^(3))^(1//3). Find f o f

If f_(1)(x)=(x)/(2)+10AA x in R and f_(n)(x)=f_(1)(f_(n-1)(x)),AA n>=2,n in N, then evaluate lim_(x rarr oo)f_(n)(x)

Let f(x)=ax+b with a,b in R , f_(1)(x)=f(x) and f_(n+1)(x)=f(f_(n)(x)),n in N , If f_(7)(x)=128x+381 , Then a+b is

Let f_(1)(x)=e^(x),f_(2)(x)=e^(f_(1)(x)),......,f_(n+1)(x)=e^(f_(n)(x)) for all n>=1. Then for any fixed n,(d)/(dx)f_(n)(x) is

Let f(x)=x^(2)-2xandg(x)=f(f(x)-1)+f(5-f(x)), then

Let f: R to R be defined by f(x) = 5^(2x)/(5^(2x) + 5) , then f(x) + f(1-x) is equal to

Let f : R to R be defined by f(x) = x^(3) + x^(2) + 5x + 2 sin x , Then

Let f_(1) (x) and f_(2) (x) be twice differentiable functions where F(x)= f_(1) (x) + f_(2) (x) and G(x) = f_(1)(x) - f_(2)(x), AA x in R, f_(1) (0) = 2 and f_(2) (0) = 1. "If" f'_(1)(x) = f_(2) (x) and f'_(2) (x) = f_(1) (x) , AA x in R . then the number of solutions of the equation (F(x))^(2) =(9x^(4))/(G(x)) is...... .

VIKAS GUPTA (BLACK BOOK)-FUNCTION -SUBJECTIVE TYPE PROBLEMS
  1. Let f :R -{(3)/(2)}to R, f (x) = (3x+5)/(2x-3).Let f (1) (x)=f (x), f(...

    Text Solution

    |

  2. Let f(x) be a polynomial of degree 6 with leading coefficient 2009. Su...

    Text Solution

    |

  3. If f(x)=x^3- 3x+1, then the number of distinct real roots of the equat...

    Text Solution

    |

  4. If f(x+y+1)={sqrt(f(x))+sqrt(f(y))}^2 and f(0)=1AAx ,y in R ,d e t e ...

    Text Solution

    |

  5. If the domain of f(x) = sqrt (12-3^(x)-3^(3-x))+ sin ^(-1) ((2x)/(3 ...

    Text Solution

    |

  6. The number of elements in the range of functions: y=sin^(-1) [x^(2)+5/...

    Text Solution

    |

  7. The number of integers in the range of function f(x)= [sinx] + [cosx] ...

    Text Solution

    |

  8. If P (x) is polynomial of degree 4 such than P (-1)=P (1) =5 and P (-2...

    Text Solution

    |

  9. The number of integral vlaue (s) of k for which the curve y = sqrt ( ...

    Text Solution

    |

  10. Let the solution set of the equation sqrt([x+[x/2]])+[sqrt({x})+[x/3]]...

    Text Solution

    |

  11. For the real number x, let f (x)=(1)/( ""^(2011sqrt(1-x^(2011)))). Fi...

    Text Solution

    |

  12. Find the number of elements contained in the range of the function f (...

    Text Solution

    |

  13. Let f (x,y)= x^(2) - y^(2) and g (x,y)=2xy. such that (f ( x,y))^(2) -...

    Text Solution

    |

  14. Let f (x) = (x+5)/(sqrt(x^(2) +1) ) , then the smallest integral va...

    Text Solution

    |

  15. The number of integral values of m for which f : R to R ,f (x) = (x ^(...

    Text Solution

    |

  16. The number of roots of equation ((x-1)(x-3))/((x-2)(x-4))-e^(x)) ((x+1...

    Text Solution

    |

  17. Let f(x)=x^2-bx+c,b is an odd positive integer. Given that f(x)=0 ha...

    Text Solution

    |

  18. Let f(x) be a continuous function such that f(0) = 1 and f(x)=f(x/7)=x...

    Text Solution

    |

  19. If f (x) = 4x ^(3) -x ^(2) -2x +1 and g (x) = {{:(min {f(t): 0 le t le...

    Text Solution

    |

  20. If x=10 sum(r=3) ^(100) (1)/((r ^(2) -4)), then [x]= (where [.] deno...

    Text Solution

    |

  21. Let f x = (ax+b)/(xa+d), where a,b,c d are non zero If f (7) =7,f (11)...

    Text Solution

    |