Home
Class 12
MATHS
The complete set of values of x in the d...

The complete set of values of x in the domain of function `f (x)= sqrt(log _(x+2{x})([x] ^(2)-5[x] +7))` where [.] denote greatest integer functioon and `{.}` denote fraction pert function) is :

A

`(-(1)/(3), 0) uu ((1)/(3), 1) uu (2,oo)`

B

`(0,1)uu(1,oo)`

C

`(-(2)/(3), 0) uu((1)/(3), 1) uu (1,oo)`

D

`(-(1)/(3),0) uu((1)/(3), 1) uu (1,oo)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the complete set of values of \( x \) in the domain of the function \[ f(x) = \sqrt{\log_{(x + 2 \{x\})}([x]^2 - 5[x] + 7)} \] where \([x]\) denotes the greatest integer function and \(\{x\}\) denotes the fractional part function, we need to ensure that the expression inside the square root is defined and non-negative. ### Step 1: Determine the conditions for the logarithm The logarithm is defined only when its base is positive and not equal to 1, and its argument must be positive. 1. **Base Condition**: \[ x + 2\{x\} > 0 \quad \text{and} \quad x + 2\{x\} \neq 1 \] 2. **Argument Condition**: \[ [x]^2 - 5[x] + 7 > 0 \] ### Step 2: Analyze the base condition The base \( x + 2\{x\} \) can be rewritten as: \[ x + 2\{x\} = x + 2(x - [x]) = x + 2x - 2[x] = 3x - [x] \] Since \([x]\) is the greatest integer less than or equal to \(x\), we have: \[ 3x - [x] > 0 \implies 3x > [x] \] This is always true since \([x] \leq x\). Next, we check when \(3x - [x] \neq 1\): \[ 3x - [x] \neq 1 \implies 3x \neq [x] + 1 \] ### Step 3: Analyze the argument condition Now, we analyze the quadratic \( [x]^2 - 5[x] + 7 \): The discriminant of this quadratic is: \[ D = (-5)^2 - 4 \cdot 1 \cdot 7 = 25 - 28 = -3 \] Since the discriminant is negative, the quadratic is always positive. Therefore, this condition is satisfied for all \( x \). ### Step 4: Solve the base condition Now, we need to solve the inequalities derived from the base condition: 1. \( 3x > [x] \) 2. \( 3x \neq [x] + 1 \) #### Case 1: \( x \) in the interval \( [n, n+1) \) where \( n \) is an integer. In this interval, \([x] = n\). Therefore: 1. \( 3x > n \) implies \( x > \frac{n}{3} \). 2. \( 3x \neq n + 1 \) implies \( x \neq \frac{n + 1}{3} \). Thus, the valid range for \( x \) in this interval is: \[ \left(\frac{n}{3}, n+1\right) \quad \text{and} \quad x \neq \frac{n + 1}{3} \] ### Step 5: Combine intervals We need to consider all integers \( n \): 1. For \( n = 0 \): \( x \in \left(0, 1\right) \) 2. For \( n = 1 \): \( x \in \left(\frac{1}{3}, 2\right) \) excluding \( \frac{2}{3} \) 3. For \( n = 2 \): \( x \in \left(\frac{2}{3}, 3\right) \) 4. For \( n = 3 \): \( x \in \left(1, 4\right) \) 5. For \( n \geq 4 \): \( x \in \left(n/3, n+1\right) \) ### Final Solution Combining all these intervals, we get: \[ (-\frac{1}{3}, 0) \cup \left(\frac{1}{3}, 1\right) \cup (1, \infty) \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    VIKAS GUPTA (BLACK BOOK)|Exercise ONE OR MORE THAN ONE ANSWE IS/ARE CORRECT|25 Videos
  • FUNCTION

    VIKAS GUPTA (BLACK BOOK)|Exercise COMPREHENSION TYPE PROBLEMS|15 Videos
  • ELLIPSE

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-4 : Subjective Type Problems|2 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-4 : Subjective Type Problems|3 Videos

Similar Questions

Explore conceptually related problems

The domain of function f (x) = log _([x+(1)/(2)])(2x ^(2) + x-1), where [.] denotes the greatest integer function is :

The domain of the function sqrt(log_((1)/(3))log_(4)([x]^(2)-5)) is (where [x] denotes greatest integer function)

The domain of the function f(x)=(1)/(sqrt([x]^(2)-2[x]-8)) is,where [^(*)] denotes greatest integer function

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

Solve : 4{x}= x+ [x] (where [*] denotes the greatest integer function and {*} denotes the fractional part function.

If f(x)=[2x], where [.] denotes the greatest integer function,then

The domain of the function f(x)=log_([x+(1)/(2)])|x^(2)-x-6|* where [] denotes the greatest integer function,is

The domain of the function f(x)=(log_(4)(5-[x-1]-[x]^(2)))/(x^(2)+x-2) is (where [x] denotes greatest integer function)

The domain of f(x)=sqrt([x]^(2)-7[x]+12) (where [.] denotes greatest integer function) is

VIKAS GUPTA (BLACK BOOK)-FUNCTION -SUBJECTIVE TYPE PROBLEMS
  1. The complete set of values of x in the domain of function f (x)= sqrt(...

    Text Solution

    |

  2. Let f(x) be a polynomial of degree 6 with leading coefficient 2009. Su...

    Text Solution

    |

  3. If f(x)=x^3- 3x+1, then the number of distinct real roots of the equat...

    Text Solution

    |

  4. If f(x+y+1)={sqrt(f(x))+sqrt(f(y))}^2 and f(0)=1AAx ,y in R ,d e t e ...

    Text Solution

    |

  5. If the domain of f(x) = sqrt (12-3^(x)-3^(3-x))+ sin ^(-1) ((2x)/(3 ...

    Text Solution

    |

  6. The number of elements in the range of functions: y=sin^(-1) [x^(2)+5/...

    Text Solution

    |

  7. The number of integers in the range of function f(x)= [sinx] + [cosx] ...

    Text Solution

    |

  8. If P (x) is polynomial of degree 4 such than P (-1)=P (1) =5 and P (-2...

    Text Solution

    |

  9. The number of integral vlaue (s) of k for which the curve y = sqrt ( ...

    Text Solution

    |

  10. Let the solution set of the equation sqrt([x+[x/2]])+[sqrt({x})+[x/3]]...

    Text Solution

    |

  11. For the real number x, let f (x)=(1)/( ""^(2011sqrt(1-x^(2011)))). Fi...

    Text Solution

    |

  12. Find the number of elements contained in the range of the function f (...

    Text Solution

    |

  13. Let f (x,y)= x^(2) - y^(2) and g (x,y)=2xy. such that (f ( x,y))^(2) -...

    Text Solution

    |

  14. Let f (x) = (x+5)/(sqrt(x^(2) +1) ) , then the smallest integral va...

    Text Solution

    |

  15. The number of integral values of m for which f : R to R ,f (x) = (x ^(...

    Text Solution

    |

  16. The number of roots of equation ((x-1)(x-3))/((x-2)(x-4))-e^(x)) ((x+1...

    Text Solution

    |

  17. Let f(x)=x^2-bx+c,b is an odd positive integer. Given that f(x)=0 ha...

    Text Solution

    |

  18. Let f(x) be a continuous function such that f(0) = 1 and f(x)=f(x/7)=x...

    Text Solution

    |

  19. If f (x) = 4x ^(3) -x ^(2) -2x +1 and g (x) = {{:(min {f(t): 0 le t le...

    Text Solution

    |

  20. If x=10 sum(r=3) ^(100) (1)/((r ^(2) -4)), then [x]= (where [.] deno...

    Text Solution

    |

  21. Let f x = (ax+b)/(xa+d), where a,b,c d are non zero If f (7) =7,f (11)...

    Text Solution

    |