Home
Class 12
MATHS
If |{:(1+cos^2 theta, sin^2 theta, 2sqrt...

If `|{:(1+cos^2 theta, sin^2 theta, 2sqrt3tantheta),(cos^2 theta, 1+sin^2 theta, 2sqrt3tan theta),(cos^2 theta, sin^2 theta, 1+2sqrt3 tan theta):}|`=0 then `theta` may be :

A

`pi/6`

B

`(5pi)/6`

C

`(7pi)/6`

D

`(11pi)/6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant equation given in the question, we need to find the values of \(\theta\) such that: \[ \begin{vmatrix} 1 + \cos^2 \theta & \sin^2 \theta & 2\sqrt{3} \tan \theta \\ \cos^2 \theta & 1 + \sin^2 \theta & 2\sqrt{3} \tan \theta \\ \cos^2 \theta & \sin^2 \theta & 1 + 2\sqrt{3} \tan \theta \end{vmatrix} = 0 \] ### Step 1: Write the Determinant The determinant can be expressed as: \[ D = \begin{vmatrix} 1 + \cos^2 \theta & \sin^2 \theta & 2\sqrt{3} \tan \theta \\ \cos^2 \theta & 1 + \sin^2 \theta & 2\sqrt{3} \tan \theta \\ \cos^2 \theta & \sin^2 \theta & 1 + 2\sqrt{3} \tan \theta \end{vmatrix} \] ### Step 2: Apply Row Operations We can simplify the determinant by performing row operations. Specifically, we can replace the second and third rows with their differences from the first row: - \(R_2 \rightarrow R_2 - R_1\) - \(R_3 \rightarrow R_3 - R_1\) This gives us: \[ D = \begin{vmatrix} 1 + \cos^2 \theta & \sin^2 \theta & 2\sqrt{3} \tan \theta \\ \cos^2 \theta - (1 + \cos^2 \theta) & (1 + \sin^2 \theta - \sin^2 \theta) & (2\sqrt{3} \tan \theta - 2\sqrt{3} \tan \theta) \\ \cos^2 \theta - (1 + \cos^2 \theta) & \sin^2 \theta - \sin^2 \theta & (1 + 2\sqrt{3} \tan \theta - (1 + \cos^2 \theta)) \end{vmatrix} \] This simplifies to: \[ D = \begin{vmatrix} 1 + \cos^2 \theta & \sin^2 \theta & 2\sqrt{3} \tan \theta \\ -\cos^2 \theta & 1 & 0 \\ -\cos^2 \theta & 0 & 2\sqrt{3} \tan \theta \end{vmatrix} \] ### Step 3: Calculate the Determinant Now we can calculate the determinant using the first row: \[ D = (1 + \cos^2 \theta) \begin{vmatrix} 1 & 0 \\ 0 & 2\sqrt{3} \tan \theta \end{vmatrix} - \sin^2 \theta \begin{vmatrix} -\cos^2 \theta & 0 \\ -\cos^2 \theta & 2\sqrt{3} \tan \theta \end{vmatrix} \] Calculating the 2x2 determinants: 1. The first determinant is \(1 \cdot (2\sqrt{3} \tan \theta) - 0 = 2\sqrt{3} \tan \theta\). 2. The second determinant is \(-\cos^2 \theta \cdot (2\sqrt{3} \tan \theta) - 0 = -2\sqrt{3} \cos^2 \theta \tan \theta\). So we have: \[ D = (1 + \cos^2 \theta)(2\sqrt{3} \tan \theta) + \sin^2 \theta (2\sqrt{3} \cos^2 \theta \tan \theta) \] ### Step 4: Set the Determinant to Zero Setting \(D = 0\): \[ (1 + \cos^2 \theta)(2\sqrt{3} \tan \theta) + \sin^2 \theta (2\sqrt{3} \cos^2 \theta \tan \theta) = 0 \] Factoring out \(2\sqrt{3} \tan \theta\): \[ 2\sqrt{3} \tan \theta \left(1 + \cos^2 \theta + \sin^2 \theta \cos^2 \theta\right) = 0 \] ### Step 5: Solve for \(\theta\) This gives us two cases: 1. \(2\sqrt{3} \tan \theta = 0 \Rightarrow \tan \theta = 0 \Rightarrow \theta = n\pi\) (where \(n\) is an integer). 2. The second factor must be zero, which simplifies to \(1 + \cos^2 \theta + \sin^2 \theta \cos^2 \theta = 0\). However, since \(\cos^2 \theta + \sin^2 \theta = 1\), we can substitute and simplify further. ### Final Values of \(\theta\) From the first case, we find that: \[ \tan \theta = -\frac{1}{\sqrt{3}} \Rightarrow \theta = \tan^{-1}\left(-\frac{1}{\sqrt{3}}\right) \] This occurs at: \[ \theta = \frac{5\pi}{6}, \frac{11\pi}{6} \] ### Conclusion Thus, the values of \(\theta\) that satisfy the determinant equation are: \[ \theta = \frac{5\pi}{6}, \frac{11\pi}{6} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE-3:COMPREHENSION TYPE PROBLEMS|3 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|23 Videos
  • DIFFERENTIAL EQUATIONS

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|6 Videos

Similar Questions

Explore conceptually related problems

If sin theta=1/sqrt2 then tan theta+cos theta=

If cos theta+sin theta=sqrt(2)cos theta, show that cos theta-sin theta=sqrt(2)sin theta

Prove that (sin theta - 2 sin^(3) theta)/(2 cos^(3) theta - cos theta) = tan theta

If cos theta+sin theta=sqrt(2)cos theta prove that cos theta-sin theta=sqrt(2)sin theta

If cos theta+sin theta=sqrt(2)cos theta, prove that cos theta-sin theta=sqrt(2)sin theta

If cos theta+sin theta=sqrt(2)cos theta; show that cos theta-sin theta=sqrt(2)sin theta

(sin5 theta-2sin3 theta + sin theta) / (cos5 theta-cos theta) = tan theta

If cos theta+sin theta=sqrt(2)cos theta then show that cos theta-sin theta=sqrt(2)sin theta

If cos theta+sin theta=sqrt(2), then cos theta-sin theta=