Home
Class 11
PHYSICS
If vec(A) = 2 I + j - k , vec(B) = I + 2...

If `vec(A) = 2 I + j - k , vec(B) = I + 2 j + 3 k` , and `vec(C ) = 6 i - 2 j - 6 k`,then the angle between `(vec(A) + vec(B))` and `vec(C )` will be

A

`30^(@)`

B

`45^(@)`

C

`60^(@)`

D

`90^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the angle between the vectors \(\vec{A} + \vec{B}\) and \(\vec{C}\), we can follow these steps: ### Step 1: Calculate \(\vec{A} + \vec{B}\) Given: \[ \vec{A} = 2\hat{i} + \hat{j} - \hat{k} \] \[ \vec{B} = \hat{i} + 2\hat{j} + 3\hat{k} \] Now, we add the vectors: \[ \vec{A} + \vec{B} = (2\hat{i} + \hat{j} - \hat{k}) + (\hat{i} + 2\hat{j} + 3\hat{k}) \] Combine the components: - For \(\hat{i}\): \(2 + 1 = 3\) - For \(\hat{j}\): \(1 + 2 = 3\) - For \(\hat{k}\): \(-1 + 3 = 2\) Thus, \[ \vec{A} + \vec{B} = 3\hat{i} + 3\hat{j} + 2\hat{k} \] ### Step 2: Identify \(\vec{C}\) Given: \[ \vec{C} = 6\hat{i} - 2\hat{j} - 6\hat{k} \] ### Step 3: Calculate the dot product \((\vec{A} + \vec{B}) \cdot \vec{C}\) Using the vectors we calculated: \[ \vec{R} = \vec{A} + \vec{B} = 3\hat{i} + 3\hat{j} + 2\hat{k} \] Now, calculate the dot product: \[ \vec{R} \cdot \vec{C} = (3\hat{i} + 3\hat{j} + 2\hat{k}) \cdot (6\hat{i} - 2\hat{j} - 6\hat{k}) \] Calculating each component: - For \(\hat{i}\): \(3 \cdot 6 = 18\) - For \(\hat{j}\): \(3 \cdot (-2) = -6\) - For \(\hat{k}\): \(2 \cdot (-6) = -12\) Thus, \[ \vec{R} \cdot \vec{C} = 18 - 6 - 12 = 0 \] ### Step 4: Calculate the magnitudes of \(\vec{R}\) and \(\vec{C}\) Magnitude of \(\vec{R}\): \[ |\vec{R}| = \sqrt{(3^2 + 3^2 + 2^2)} = \sqrt{9 + 9 + 4} = \sqrt{22} \] Magnitude of \(\vec{C}\): \[ |\vec{C}| = \sqrt{(6^2 + (-2)^2 + (-6)^2)} = \sqrt{36 + 4 + 36} = \sqrt{76} \] ### Step 5: Use the dot product to find the angle \(\theta\) Using the formula: \[ \vec{R} \cdot \vec{C} = |\vec{R}| |\vec{C}| \cos \theta \] Since \(\vec{R} \cdot \vec{C} = 0\): \[ 0 = |\vec{R}| |\vec{C}| \cos \theta \] This implies: \[ \cos \theta = 0 \] ### Step 6: Determine the angle \(\theta\) The angle \(\theta\) for which \(\cos \theta = 0\) is: \[ \theta = 90^\circ \] ### Final Answer: The angle between \((\vec{A} + \vec{B})\) and \(\vec{C}\) is \(90^\circ\). ---

To find the angle between the vectors \(\vec{A} + \vec{B}\) and \(\vec{C}\), we can follow these steps: ### Step 1: Calculate \(\vec{A} + \vec{B}\) Given: \[ \vec{A} = 2\hat{i} + \hat{j} - \hat{k} \] ...
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    CP SINGH|Exercise Excercises|66 Videos
  • UNITS, DIMENIONS AND MEASUREMENTS

    CP SINGH|Exercise Exercises|63 Videos
  • WORK, ENERGY AND POWER

    CP SINGH|Exercise EXERCISES|92 Videos

Similar Questions

Explore conceptually related problems

vec(a)= -i+j+2k , vec(b)=2i-j-k and vec(c)=-2i+j+3k ,then the angle between 2vec(a)-vec(c) and vec(a)+vec(b) is

If vec A =4 hat I + 6 hat j -3 hat k and vec B =- 2 hat I -5 hat j + 7 hat k , find the angle between vec A and vec B .

If vec a = vec i + vec j + vec k, vec b = vec i - vec j + vec k and vec c = vec i + 2vec j - vec k, then the value of | [vec a.vec a, vec a.vec b, vec a.vec c], [vec b.vec a, vec b.vec b, vec b.vec c], [vec c.vec a, vec c.vec b, vec c.vec c ] | is equal to: (1) 2 (2) 4 (3) 16 (4) 64

If vec A=hat I + 2 hat j -3 hat k , vec B =2 hat I -hat j + hat k and vec Chat I -3 hat j + 2 hat k , then find vec A xx ( vec B xx vec C).

If | vec a | = 2, | vec b | = 7 and vec a xxvec b = 3vec i + 2vec j + 6vec k then vec a * vec b =

If vec(a)=(hat(i)+2hat(j)-3hat(k)) and vec(b)=(3hat(i)-hat(j)+2hat(k)) then the angle between (vec(a)+vec(b)) and (vec(a)-vec(b)) is

If vec(a) = hat(i) + hat(j) + 2 hat(k) and vec(b) = 3 hat(i) + 2 hat(j) - hat(k) , find the value of (vec(a) + 3 vec(b)) . ( 2 vec(a) - vec(b)) .

If vec(A) = hat(i) + hat(j) + hat(k) and B = -hat(i) - hat(j) - hat(k) . Then angle made by (vec(A) - vec(B)) with vec(A) is :

Let vec a = 2i + j + k, vec b = i + 2j + k and vec c = 2i-3j + 4k, A vector vec r satisfying vec r xxvec b = vec c xxvec b and vec r * vec a = 0 , is

If vec a = i + j + k & vec b = i-2j + k, then the vector vec c such that vec a * vec c = 2 & vec a xxvec c = vec b is

CP SINGH-VECTORS-Excercises
  1. If a vector 2 hat (i) + 3 hat(j) + 8 hat(k) is perpendicular to the ve...

    Text Solution

    |

  2. Which of the following vectors is//are perpendicular to the vector 4 I...

    Text Solution

    |

  3. If vec(A) = 2 I + j - k , vec(B) = I + 2 j + 3 k , and vec(C ) = 6 i -...

    Text Solution

    |

  4. Vectors which is perpendicular to ( a cos theta hat (i) + b sin theta ...

    Text Solution

    |

  5. Two vectors vec A and vecB have equal magnitudes.If magnitude of (vecA...

    Text Solution

    |

  6. The position vector of a particle is vec( r) = a cos omega t i + a sin...

    Text Solution

    |

  7. The component of vector A= 2hat(i)+3hat(j) along the vector hat(i)+hat...

    Text Solution

    |

  8. The vector component of vector vec(A) = 3 hat(i) + 4 hat(j) + 5 hat(k)...

    Text Solution

    |

  9. If vec(A)xxvec(B)=vec(C ), then which of the following statements is w...

    Text Solution

    |

  10. The magnitude of the vectors product of two vectors |vecA| and |vecB| ...

    Text Solution

    |

  11. Three vector vec(A),vec(B), vec(C ) satisfy the relation vec(A)*vec(B)...

    Text Solution

    |

  12. A vector vec(A) is along the positive x- axis . If B is another vector...

    Text Solution

    |

  13. A vector vec(A) points verically upward and vec(B) points towards nort...

    Text Solution

    |

  14. The value of (vec(A)+vec(B))xx(vec(A)-vec(B)) is

    Text Solution

    |

  15. The scalar product of two vectors is 2 sqrt(3) and the magnitude of th...

    Text Solution

    |

  16. If |vec(A)xxvec(B)|=sqrt(3)vec(A).vec(B), then the value of |vec(A)+ve...

    Text Solution

    |

  17. The angle between the vector vec(A) and vec(B) is theta. Find the valu...

    Text Solution

    |

  18. What is the unit vector perpendicular to the following vectors 2 hat(i...

    Text Solution

    |

  19. Two adjacent sides of a parallelogram are respectively by the two vect...

    Text Solution

    |

  20. The minimum number of vectors having different planes which can be add...

    Text Solution

    |