Home
Class 11
PHYSICS
If a force vec(F) = (vec(i) + 2 vec(j)+v...

If a force `vec(F) = (vec(i) + 2 vec(j)+vec(k)) N` acts on a body produces a displacement of `vec(S) = (4vec(i)+vec(j)+7 vec(k))m`, then the work done is

A

`9J`

B

`13 J`

C

`5J`

D

`1J`

Text Solution

Verified by Experts

The correct Answer is:
B

`W = vec(F).vec(S)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COLLISION

    NARAYNA|Exercise Level-II (H.W)|54 Videos
  • COLLISION

    NARAYNA|Exercise Subjective type Questions|9 Videos
  • CIRCULAR MOTION

    NARAYNA|Exercise LEVEL II(H.W)|51 Videos
  • FRICTION

    NARAYNA|Exercise Passage type of questions I|6 Videos

Similar Questions

Explore conceptually related problems

A particle which is experiencing a force, given by vec(F) = 3 vec(i) - 12 vec(j) , undergoes a displacement of vec(d) = 4 vec(i) . If the particle had a kinetic energy of 3 J at the beginning of the displacement

| 2vec i-3vec j + vec k | =

Knowledge Check

  • A force vec F = (5 vec i+ 3 vec j+ 2 vec k) N is applied over a particle which displaces it from its origin to the point vec r=(2 vec i- vec j) m . The work done on the particle in joules is.

    A
    `+ 10`
    B
    `+ 7`
    C
    `-7`
    D
    `+ 13`
  • A force F = (2 vec i + vec j + vec k)N is acting on a particle moving with constant velocity vec v = (vec i + 2 vec j + vec k)m/s . Power delivered by force is

    A
    4 watt
    B
    5 watt
    C
    6 watt
    D
    8 watt
  • If vec F =2 hat i + 3hat j +4hat k acts on a body and displaces it by vec S =3 hat i + 2hat j + 5 hat k , then the work done by the force is

    A
    12 J
    B
    20 J
    C
    32 J
    D
    64 J
  • Similar Questions

    Explore conceptually related problems

    Examine if vec(i) - 3vec(j) + 2vec(k), 2vec(i) - 4vec(j) - vec(k) and 3vec(i) + 2vec(j) - vec(k) are linearly independent or dependent .

    If vec a xx i+2vec a-4vec i-2vec j+vec k=0 then vec a=

    If the vector vec a= x vec i + y vec j + 2 vec k is perpendicular to the vector vec b = vec i - vec j + vec k and the scalar product of vec a and vec c= vec i + 2 vec j is equal to 4 then x= ________ and y=__________.

    Find the value of: (vec j xxvec k) * (3vec i + 2vec j-vec k)

    The position of the particle is given by vec(r )=(vec(i)+2vec(j)-vec(k)) momentum vec(P)= (3vec(i)+4vec(j)-2vec(k)) . The angular momentum is perpendicular to