Home
Class 12
MATHS
Write the following function in the simp...

Write the following function in the simplest form: `tan^(-1)x/(sqrt(a^2-x^2))`,`|x|lta`

Text Solution

AI Generated Solution

To simplify the function \( \frac{\tan^{-1} x}{\sqrt{a^2 - x^2}} \), we can follow these steps: ### Step 1: Substitute \( x \) with \( a \sin \theta \) Let \( x = a \sin \theta \). This substitution is useful because it relates \( x \) to a trigonometric function, which will help simplify the expression involving \( \sqrt{a^2 - x^2} \). ### Step 2: Rewrite the expression Substituting \( x = a \sin \theta \) into the expression gives: \[ ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise MISCELLANEOUS EXERCISE|17 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise Exercise 2.1|14 Videos
  • INTEGRALS

    NCERT|Exercise EXERCISE 7.4|25 Videos
  • LINEAR PROGRAMMING

    NCERT|Exercise SOLVED EXAMPLES|11 Videos

Similar Questions

Explore conceptually related problems

Write the following functions in the simplest form: tan^(-1){(x)/(sqrt(a^(2)-x^(2)))}

Write the following function in the simplest form: tan^(-1)((1)/(sqrt(x^(2)-1))),|x|>1

Write the following functions in the simplest form: (i) tan^(-1){x/(sqrt(a^2-x^2))},\ -a< x < a (ii) tan^(-1){sqrt((a-x)/(a+x))},\ -a< x < a

Write the following function in the simplest form: tan^(-1)((sqrt(1+x^(2))-1)/(x)),x!=0

Write the following function in the simplest form: tan^(-1)sqrt((1-cos x)/(1+cos x))

Write the following functions in the simplest form: sin^(-1){(x)/(sqrt(x^(2)+a^(2)))}( ii) cos^(-1){(x)/(sqrt(x^(2)+a^(2)))}

Write the following function in the simplest form: sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))]

Write the following function in the simplest form: tan^(-1)((3a^(2)x-x^(3))/(a^(3)-3ax^(2))),a>0;(-a)/(sqrt(3))<=x<=(a)/(sqrt(3))

Write each of the following in the simplest form: tan^(-1){x/(a+sqrt(a^2-x^2))}, -a

Write the simplest form : tan^(-1)(1/sqrt(x^2 -1)) , |x|gt1