Home
Class 12
MATHS
The value of the determinant |alphabetal...

The value of the determinant `|alphabetalalphax nalphabetax|` is independent of `l` b. independent of `n` c.`alpha(x-l)(x-beta)` d. `alphabeta(x-l)(x-n)`

Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    ALLEN|Exercise EX -JA|8 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ALLEN|Exercise All Questions|145 Videos

Similar Questions

Explore conceptually related problems

The root of the equation |(x,alpha,1),(beta,x,1),(beta,gamma,1)| = 0 are independent of :

The expression cos^(2)(alpha+beta)+cos^(2)(alpha-beta)-cos2 alpha*cos2 beta is (a)independent of alpha(b) independent of beta (c)independent of alpha and beta(d) dependent on alphaand beta

The roots of the equation |{:(x,alpha,1),(beta,x,1),(beta,gamma,1):}|=0 are independent of

The value of the determinant |a^(2)a1cos nx cos(n+1)x cos(n+2)x sin nx sin(n+1)x sin(n+2)x is independent of n(b)a(c)x(d) none of these

The expression (sin(alpha+theta)-sin(alpha-theta))/(cos(beta-theta)-cos(beta+theta)) is independent of alpha b.independent of beta c. independent of theta d .independent of alpha and beta

The value of the determinant |(1,(alpha^(2x)-alpha^(-2x))^2,(alpha^(2x)+alpha^(-2x))^2),(1,(beta^(2x)-beta^(-2x))^2,(beta^(2x)+beta^(-2x))^2),(1,(gamma^(2x)-gamma^(-2x))^2,(gamma^(2x)+gamma^(-2x))^2)| is (a) 0 (b) (alphabeta gamma)^(2x) (c) (alpha beta gamma)^(-2x) (d) None of these

Given that (log)_p x=alpha\ a n d(log)_q x=beta,\ then value of equals- a. (alphabeta)/(beta-alpha) b. (beta-alpha)/(alphabeta) c. (alpha-beta)/(alphabeta) d. (alphabeta)/(alpha-beta)

If p(x), q(x), r(x) be polynomials of degree one and alpha, beta, gamma are real nubers then |(p(alpha), p(beta), p(gamma)),(q(alpha), q(beta), q(gamma)), (r(alpha), r(beta), r(gamma))| (A) independent of alpha (B) independent of beta (C) independent gamma (D) independent of all alpha,beta and gamma

If alpha and beta be the zeroes of the polynomial p(x)=x^(2)-5x+2 , find the value of (1)/(alpha)+(1)/(beta)-3alphabeta.

ALLEN-DETERMINANTS-All Questions
  1. If a^2+b^2+c^2=-2a n df(x)= |a+a^2x(1+b^2)x(1+c^2)x(1+a^2)x1+b^2x(1+c...

    Text Solution

    |

  2. If |a a x m m m b x b|=0,\ then x may be equal to- a.a b. b c.a+b d. ...

    Text Solution

    |

  3. The value of the determinant |alphabetalalphax nalphabetax| is indepen...

    Text Solution

    |

  4. If the determinant |a+p l+x u+fb+q x+y v+gc+r n+z w+h| splits into exa...

    Text Solution

    |

  5. The values of lambda for which the system of euations x+y+z=6, x+2y+3z...

    Text Solution

    |

  6. If x , y , z are in A.P. , then the value of the determinant are in A....

    Text Solution

    |

  7. Statement 1 is True: Statement 2 is True; Statement 2 is a correct ...

    Text Solution

    |

  8. Comprehension 2 Consider the system of linear equations alphax+y...

    Text Solution

    |

  9. Comprehension 2 Consider the system of linear equations alphax+y...

    Text Solution

    |

  10. Without expanding the determinant prove that: |0b-c-b0a c-a0|=0

    Text Solution

    |

  11. Prove that: |1a a^2-b c1bb^2-c a1cc^2-a b|=0

    Text Solution

    |

  12. Prove that: |a^2+2a2a+1 1 2a+1a+2 1 3 3 1|=(a-1)^3 .

    Text Solution

    |

  13. By using properties of determinants. Show that:|1+a^2-b^2 2a b-2b2a b1...

    Text Solution

    |

  14. Show that: |a b-cc+b a+c b c-a a-bb+a c|=(a+b+c)(a^2+b^2+c^2)dot

    Text Solution

    |

  15. Absolute value of sum of roots of the equation |x+22x+3 3x+4 2x+3 3x+4...

    Text Solution

    |

  16. a+b+c=0, solve for x : [[a-x,c,b],[c,b-x,a],[b,a,c-x]]=0

    Text Solution

    |

  17. Prove that '[[b-c,c-a,a-b],[b'-c'],[c'-a'][a'-b'],[b"-c",c"-a",a"-b"]]...

    Text Solution

    |

  18. If 3 digit numbers A28, 3B9 and 62C are divisible by a fixed constant ...

    Text Solution

    |

  19. For a fixed positive integer n , if =|n !(n+1)!(n+2)!(n+1)!(n+2)!(n+3)...

    Text Solution

    |

  20. If Dr=|2^(r-1)2(3^(r-1))4(5^(r-1))x y z2^n-1 3^n-1 5^n-1| then p...

    Text Solution

    |