Home
Class 12
MATHS
If y =e ^(x sin (x ^(3)))+(tan x)^(x) t...

If `y =e ^(x sin (x ^(3)))+(tan x)^(x) ` then `(dy)/(dx)` may be equal to:

A

`e ^(x sin (x^(3)))[3x ^(3) cos (x ^(3))+sin (x ^(3)) ]+ (tan x) ^(x) [ln tan x+ 2x cosec 2x ]`

B

`e ^(x sin (x ^(3)))[x ^(3) cos (x ^(3))+ sin (x ^(3))]+ (tan x )^(x) [ln tan x+ 2x cosec 2x]`

C

`e ^(x sin ( x ^(3)))[x ^(3) sin (x ^(3))+sin (x ^(3))]+(tan x ) ^(x) [ln tan x+2 cosec 2x]`

D

`e ^(xsin (x ^(3)))[3x ^(3) cos (x ^(3))+sin (x ^(3))]+(tan x )^(x) [ln tan x+ (x sec ^(2))/(tan x )]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = e^{x \sin(x^3)} + (\tan x)^x \), we will differentiate each term separately and then combine the results. ### Step-by-Step Solution: 1. **Differentiate the first term \( e^{x \sin(x^3)} \)**: - We will use the chain rule for differentiation. Let \( u = x \sin(x^3) \). - The derivative of \( e^u \) is \( e^u \cdot \frac{du}{dx} \). - Now, we need to find \( \frac{du}{dx} \): \[ u = x \sin(x^3) \] - Using the product rule: \[ \frac{du}{dx} = \sin(x^3) + x \cdot \frac{d}{dx}(\sin(x^3)) \] - Now, differentiate \( \sin(x^3) \) using the chain rule: \[ \frac{d}{dx}(\sin(x^3)) = \cos(x^3) \cdot 3x^2 \] - Thus, \[ \frac{du}{dx} = \sin(x^3) + x \cdot (3x^2 \cos(x^3)) = \sin(x^3) + 3x^3 \cos(x^3) \] - Therefore, the derivative of the first term is: \[ \frac{d}{dx}(e^{x \sin(x^3)}) = e^{x \sin(x^3)} \cdot \left(\sin(x^3) + 3x^3 \cos(x^3)\right) \] 2. **Differentiate the second term \( (\tan x)^x \)**: - We will use logarithmic differentiation. Let \( v = (\tan x)^x \). - Taking the natural logarithm: \[ \ln v = x \ln(\tan x) \] - Differentiating both sides: \[ \frac{1}{v} \frac{dv}{dx} = \ln(\tan x) + x \cdot \frac{d}{dx}(\ln(\tan x)) \] - Now, differentiate \( \ln(\tan x) \): \[ \frac{d}{dx}(\ln(\tan x)) = \frac{1}{\tan x} \cdot \sec^2 x = \frac{\sec^2 x}{\tan x} \] - Thus, \[ \frac{dv}{dx} = v \left(\ln(\tan x) + x \cdot \frac{\sec^2 x}{\tan x}\right) \] - Substituting back \( v = (\tan x)^x \): \[ \frac{dv}{dx} = (\tan x)^x \left(\ln(\tan x) + x \cdot \frac{\sec^2 x}{\tan x}\right) \] 3. **Combine the derivatives**: - The overall derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = e^{x \sin(x^3)} \left(\sin(x^3) + 3x^3 \cos(x^3)\right) + (\tan x)^x \left(\ln(\tan x) + x \cdot \frac{\sec^2 x}{\tan x}\right) \] ### Final Result: Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = e^{x \sin(x^3)} \left(\sin(x^3) + 3x^3 \cos(x^3)\right) + (\tan x)^x \left(\ln(\tan x) + x \cdot \frac{\sec^2 x}{\tan x}\right) \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|32 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (MATHCING TYPE PROBLEMS)|1 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|23 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

Let y=e^(x sin x^(3))+(tan x)^(x)*Fin dquad (dy)/(dx)

If x^(y)=e^(x-y) , then (dy)/(dx) is equal to

If x=e^(x/y), then (dy)/(dx) is equal to

If tan(x+y)=e^(x+y) , then (dy)/(dx)

y=x^(tan(x))+(tan x)^(x) , find (dy)/(dx)

If y=x^(tan x)+(tan x)^(x) , then find (dy)/(dx)

If y= (tan x )^(sin x ) ,then (dy)/(dx)=

If y=e^(x)+(sin x)^(x) , then (dy)/(dx) = ?

If y=e^(tan x(ln sin x)) then (dy)/(dx) is equal to

VIKAS GUPTA (BLACK BOOK)-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)
  1. Let f(x) be a differentiable function satisfying f(y)f(x/y)=f(x) AA, x...

    Text Solution

    |

  2. Let f(x) =(x^(2)-3x+ 2) (x ^(2) + 3x +2) and alpha, beta, gamma satisf...

    Text Solution

    |

  3. Let f:RtoR is given by f(x)={(p+qx+x^(2),xlt2),(2px+3qx^(2),xge2):} t...

    Text Solution

    |

  4. If y =e ^(x sin (x ^(3)))+(tan x)^(x) then (dy)/(dx) may be equal to:

    Text Solution

    |

  5. Let f(x)=x+(1-x)x^3+(1-x)(1-x^2)x^3+.........+(1-x)(1-x^2)........(1-x...

    Text Solution

    |

  6. Let f (x)= [{:(x ^(2)+a,0 le x lt 1),( 2x+b,1le x le 2):}and g (x)=[{:...

    Text Solution

    |

  7. If f (x)= [{:((sin [x^(2)]pi)/(x ^(2)-3x+8)+ax ^(3)+b,,, 0 le x le 1),...

    Text Solution

    |

  8. If f (x)= {{:(1+x, 0 le x le 2),( 3x-2, 2 lt x le 3):}, then f (f(x)) ...

    Text Solution

    |

  9. Let f (x)=(x+1) (x+2) (x+3)…..(x+100) and g (x) =f (x) f''(x) -f ('(x)...

    Text Solution

    |

  10. Let f(x)={{:(,|x|-3,x lt 1),(,|x-2|+a,x ge 1):} g(x)={{:(,2-|x|,x lt...

    Text Solution

    |

  11. Let f (x) be a continous function in [-1,1] such that f (x)= [{:((ln...

    Text Solution

    |

  12. f (x) is differentiable function satisfying the relationship f ^(2) (x...

    Text Solution

    |

  13. The function f (x)=[sqrt(1-sqrt(1-x ^(2)))],(where [.] denotes greates...

    Text Solution

    |

  14. A function f(x) satisfies the relation f(x+y) = f(x) + f(y) + xy(x+y),...

    Text Solution

    |

  15. The points of discontinuities of f (x)= [(6x)/(pi)]cos [(3x)/(pi)]"in"...

    Text Solution

    |

  16. If f(x)={{:(,(x^(2))/(2),0 le x lt 1),(,2x^(2)-3x+(3)/(2),1 le x le 2)...

    Text Solution

    |

  17. If x=phi(t),y=Psi(t)," then "(d^(2)y)/(dx^(2)) is equal to

    Text Solution

    |

  18. f (x)=[x] and g (x)= {{:( 0"," , x in I ),( x ^(2)"," , cancel(in)I)...

    Text Solution

    |

  19. Let f : R ^(+) to R defined as f (x)= e ^(x) + ln x and g = f ^(-1) th...

    Text Solution

    |

  20. Let f (x)=[{:((3x-x ^(2))/(2),,, x lt 2),([x-1],,, 2 le x lt 3),( x ^(...

    Text Solution

    |