Home
Class 12
MATHS
Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 ...

Let `f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)` and let `g (x) = f ^(-1) (x).` Find `g'''(o).`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( g'''(0) \) for the function \( g(x) = f^{-1}(x) \), where \[ f(x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \frac{x^5}{5}, \] we will follow these steps: ### Step 1: Differentiate \( g(x) \) Using the relationship between \( g(x) \) and \( f(x) \), we know that: \[ g(f(x)) = x. \] Differentiating both sides with respect to \( x \): \[ g'(f(x)) \cdot f'(x) = 1. \] Thus, we can express \( g'(f(x)) \) as: \[ g'(f(x)) = \frac{1}{f'(x)}. \] ### Step 2: Differentiate \( g'(x) \) Now, we differentiate \( g'(f(x)) \) again: \[ g''(f(x)) \cdot f'(x) + g'(f(x)) \cdot f''(x) = 0. \] Substituting \( g'(f(x)) = \frac{1}{f'(x)} \): \[ g''(f(x)) \cdot f'(x) + \frac{f''(x)}{f'(x)} = 0. \] This gives us: \[ g''(f(x)) = -\frac{f''(x)}{(f'(x))^3}. \] ### Step 3: Differentiate \( g''(x) \) We differentiate \( g''(f(x)) \): \[ g'''(f(x)) \cdot f'(x) + g''(f(x)) \cdot f''(x) = 0. \] Substituting \( g''(f(x)) = -\frac{f''(x)}{(f'(x))^3} \): \[ g'''(f(x)) \cdot f'(x) - \frac{f''(x) \cdot f''(x)}{(f'(x))^3} = 0. \] Thus, \[ g'''(f(x)) = \frac{f''(x) \cdot f''(x)}{(f'(x))^4}. \] ### Step 4: Evaluate at \( x = 0 \) Now we need to find \( g'''(0) \). First, we calculate \( f(0) \), \( f'(0) \), \( f''(0) \), and \( f'''(0) \): 1. **Calculate \( f(0) \)**: \[ f(0) = 0 + 0 + 0 + 0 + 0 = 0. \] 2. **Calculate \( f'(x) \)**: \[ f'(x) = 1 + x + x^2 + x^3 + x^4. \] So, \[ f'(0) = 1. \] 3. **Calculate \( f''(x) \)**: \[ f''(x) = 1 + 2x + 3x^2 + 4x^3. \] Thus, \[ f''(0) = 1. \] 4. **Calculate \( f'''(x) \)**: \[ f'''(x) = 2 + 6x + 12x^2. \] So, \[ f'''(0) = 2. \] ### Step 5: Substitute into \( g'''(0) \) Now substituting these values into our expression for \( g'''(f(0)) \): \[ g'''(0) = \frac{f''(0) \cdot f''(0)}{(f'(0))^4} = \frac{1 \cdot 1}{1^4} = 1. \] ### Final Answer Therefore, the value of \( g'''(0) \) is \[ \boxed{1}. \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (MATHCING TYPE PROBLEMS)|1 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=(x-3)^(5)(x+1)^(4) then

Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g be inverse function of f and h (x)= (a+bx ^(3//2))/(x ^(5//4)),h '(5)=0, then (a^(2))/(5b^(2) g'((-7)/(6)))=

Let f(x)=x^(2)+xg^(2)(1)+g'(2) and g(x)=f(1)*x^(2)+xf'(x)+f''(x) then find f(x) and g(x)

If f (x) = (3x + 4)/( 5x -7), g (x) = (7x +4)/(5x -3) then f [g(x)]=

Let f(x) = x+5 and g(x) = x -5 , x in R . Find (fog)(5).

Let f(x)=x^(2)-2x and g(x)=f(f(x)-1)+f(5-f(x)), then

Let f(x)=[x] and g(x)=|x| . Find (f+2g)(-1)

Let f(x)=[x] and g(x)=|x| . Find (gof)(5/3) fog(5/3)

Let f (x) = |x – 2| + |x – 3| + |x – 4| and g(x) = f (x + 1) . Then

VIKAS GUPTA (BLACK BOOK)-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. The number of values of x , x I [-2,3] where f (x) =[x ^(2)] sin (pix)...

    Text Solution

    |

  2. If f (x) is continous and fifferentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  3. In f (x)= [{:(cos x ^(3),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  4. Let f (x) =x ^(2) +ax+3 and g (x) =x+b, where F (x) =lim (xto oo) (f(x...

    Text Solution

    |

  5. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  6. If f (x) +2 f (1-x)( =x ^(2) +2AA x in R and f (x) is a differentiable...

    Text Solution

    |

  7. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  8. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  9. f (x) =a cos (piy)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  10. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  11. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  12. If y=e^(2 sin ^(-1)x) then |((x ^(2) -1) y ^('') +xy')/(y)| is equal t...

    Text Solution

    |

  13. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  14. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  15. Let f :R to R be a differentiable function satisfying: f (xy) =(f(x)...

    Text Solution

    |

  16. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |

  17. Let f (x) = x tan ^(-1) (x^(2)) + x^(4) Let f ^(k) (x) denotes k ^(th)...

    Text Solution

    |

  18. If x = cos theta and y = sin^(3) theta, then |(yd ^(2)y)/(dx ^(2))+((d...

    Text Solution

    |

  19. The value of x, x in (2,oo) where f (x) = sqrt(x sqrt(8x-16))+ sqrt(x-...

    Text Solution

    |

  20. The number of non differentiability of point of function f (x) = min (...

    Text Solution

    |