Home
Class 12
MATHS
(dy)/(dx) ((1+ cos x)/(y)) =- sin x and ...

`(dy)/(dx) ((1+ cos x)/(y)) =- sin x and f ((pi)/(2)) =-1,` then `f (0)` is:

A

-2

B

-1

C

-3

D

-4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation given by \[ \frac{dy}{dx} \cdot \frac{1 + \cos x}{y} = -\sin x \] with the initial condition \( f\left(\frac{\pi}{2}\right) = -1 \), we will follow these steps: ### Step 1: Separate the Variables We can rearrange the equation to separate the variables \( y \) and \( x \): \[ \frac{1}{y} dy = -\frac{\sin x}{1 + \cos x} dx \] ### Step 2: Integrate Both Sides Now we will integrate both sides: \[ \int \frac{1}{y} dy = \int -\frac{\sin x}{1 + \cos x} dx \] The left-hand side integrates to: \[ \ln |y| + C_1 \] For the right-hand side, we can simplify the integral. Notice that: \[ -\frac{\sin x}{1 + \cos x} = -\frac{d(1 + \cos x)}{1 + \cos x} \] Thus, we can perform the substitution \( t = 1 + \cos x \), which gives us: \[ \int -\frac{1}{t} dt = -\ln |t| + C_2 \] Substituting back for \( t \): \[ -\ln |1 + \cos x| + C_2 \] ### Step 3: Combine the Results Combining both integrals, we have: \[ \ln |y| = -\ln |1 + \cos x| + C \] where \( C = C_2 - C_1 \). ### Step 4: Exponentiate to Solve for \( y \) Exponentiating both sides gives: \[ |y| = e^{C} \cdot \frac{1}{|1 + \cos x|} \] Let \( C' = e^{C} \), we can write: \[ y = \frac{C'}{1 + \cos x} \] ### Step 5: Apply Initial Condition Now we apply the initial condition \( f\left(\frac{\pi}{2}\right) = -1 \): At \( x = \frac{\pi}{2} \): \[ y = \frac{C'}{1 + \cos\left(\frac{\pi}{2}\right)} = \frac{C'}{1 + 0} = C' \] Setting this equal to -1 gives: \[ C' = -1 \] ### Step 6: Write the Final Solution Thus, the solution for \( y \) becomes: \[ y = \frac{-1}{1 + \cos x} \] ### Step 7: Find \( f(0) \) Now we need to find \( f(0) \): \[ f(0) = y(0) = \frac{-1}{1 + \cos(0)} = \frac{-1}{1 + 1} = \frac{-1}{2} \] ### Final Answer Thus, the value of \( f(0) \) is: \[ \boxed{-\frac{1}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|6 Videos
  • DIFFERENTIAL EQUATIONS

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (COMPREHENSION TYPE PROBLEM)|8 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos
  • ELLIPSE

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-4 : Subjective Type Problems|2 Videos

Similar Questions

Explore conceptually related problems

f(x)=(sin x-x cos x)/(x^(2)) if x!=0 and f(0)=0 then int_(0)^(1)f(x)dx is

If (2+sin x)(dy)/(dx)+(y+1)cos x=0 and y(0)=1, then y((pi)/(2)) is equal to :

Let F(x)=(1)/(2)int(sin x+cos x)/(e^(-x)+sin x)dx and F(0)=1 then F(x) is

If y=y(x) is the solution of the equation e^(sin y) cos y""(dy)/(dx) +e^(sin y) cos x = cos x,y (0)=0, then 1+y ((pi)/(6)) +( sqrt(3))/(2) y((pi)/(3)) +(1)/( sqrt(2)) y((pi)/(4)) is equal to

int_ (0) ^ ((pi) / (2)) (sin x) / (sin x + cos x) dx = int_ (0) ^ ((pi) / (2)) (cos x) / (sin x + cos x) dx = int_ (0) ^ ((pi) / (2)) (dx) / (1 + cot x) = int_ (0) ^ ((pi) / (2)) (dx) / ( 1 + time x) = (pi) / (4)

Let f'(x)=3x^(2)sin((1)/(x))-x cos((1)/(x)), if x!=0,f(0)=0 and f((1)/(pi))=0 then

f(x)=int x^(sin x)(1+x cos x*ln x+sin x)dx and f((pi)/(2))=(pi^(2))/(4) Then the value of |cos(f(pi))| is

If f (x) = int_ (0) ^ (sin x) cos ^ (- 1) tdt + int_ (0) ^ (cos x) sin ^ (- 1) tdt, 0