Home
Class 12
MATHS
If sin theta=(1)/(2) (a+(1)/(a)) and sin...

If `sin theta=(1)/(2) (a+(1)/(a)) and sin 3 theta=(k)/(2)(a^(3)+(1)/(a^(3)))`, then `k+6` is equal to :

A

3

B

4

C

5

D

-4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equations: 1. \( \sin \theta = \frac{1}{2} \left( a + \frac{1}{a} \right) \) 2. \( \sin 3\theta = \frac{k}{2} \left( a^3 + \frac{1}{a^3} \right) \) We need to find the value of \( k + 6 \). ### Step 1: Use the formula for \( \sin 3\theta \) We know that: \[ \sin 3\theta = 3 \sin \theta - 4 \sin^3 \theta \] ### Step 2: Substitute \( \sin \theta \) Substituting the value of \( \sin \theta \): \[ \sin 3\theta = 3 \left( \frac{1}{2} \left( a + \frac{1}{a} \right) \right) - 4 \left( \frac{1}{2} \left( a + \frac{1}{a} \right) \right)^3 \] ### Step 3: Simplify the first term Calculating the first term: \[ 3 \cdot \frac{1}{2} \left( a + \frac{1}{a} \right) = \frac{3}{2} \left( a + \frac{1}{a} \right) \] ### Step 4: Calculate \( \sin^3 \theta \) Now, we need to compute \( \left( \frac{1}{2} \left( a + \frac{1}{a} \right) \right)^3 \): \[ \left( \frac{1}{2} \left( a + \frac{1}{a} \right) \right)^3 = \frac{1}{8} \left( a + \frac{1}{a} \right)^3 \] Using the identity \( (x + y)^3 = x^3 + y^3 + 3xy(x + y) \): \[ \left( a + \frac{1}{a} \right)^3 = a^3 + \frac{1}{a^3} + 3 \left( a \cdot \frac{1}{a} \right) \left( a + \frac{1}{a} \right) = a^3 + \frac{1}{a^3} + 3 \left( a + \frac{1}{a} \right) \] Thus, \[ \left( \frac{1}{2} \left( a + \frac{1}{a} \right) \right)^3 = \frac{1}{8} \left( a^3 + \frac{1}{a^3} + 3 \left( a + \frac{1}{a} \right) \right) \] ### Step 5: Substitute back into \( \sin 3\theta \) Now substituting back into the equation for \( \sin 3\theta \): \[ \sin 3\theta = \frac{3}{2} \left( a + \frac{1}{a} \right) - 4 \cdot \frac{1}{8} \left( a^3 + \frac{1}{a^3} + 3 \left( a + \frac{1}{a} \right) \right) \] \[ = \frac{3}{2} \left( a + \frac{1}{a} \right) - \frac{1}{2} \left( a^3 + \frac{1}{a^3} + 3 \left( a + \frac{1}{a} \right) \right) \] ### Step 6: Combine like terms Combining the terms: \[ \sin 3\theta = \left( \frac{3}{2} - \frac{3}{2} \right) \left( a + \frac{1}{a} \right) - \frac{1}{2} \left( a^3 + \frac{1}{a^3} \right) \] \[ = -\frac{1}{2} \left( a^3 + \frac{1}{a^3} \right) \] ### Step 7: Set equal to the given \( \sin 3\theta \) Now we equate this to the given expression for \( \sin 3\theta \): \[ -\frac{1}{2} \left( a^3 + \frac{1}{a^3} \right) = \frac{k}{2} \left( a^3 + \frac{1}{a^3} \right) \] ### Step 8: Solve for \( k \) From this, we can see: \[ -k = -1 \implies k = 1 \] ### Step 9: Find \( k + 6 \) Finally, we need to find \( k + 6 \): \[ k + 6 = 1 + 6 = 7 \] Thus, the final answer is: \[ \boxed{7} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-2 : One or More than One Answer is/are Correct|4 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-3 : Comprehension Type Problems|7 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • MATRICES

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-4 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

cos theta=(1)/(2)(a+(1)/(a)) and cos3 theta=k(a^(3)+(1)/(a^(3))) then K=

If cos (81^(@) + theta) = sin(k/3 - theta) , then k is equal to

If sin theta=1/2 then prove that 3sin theta-4sin^3 theta=1

For 0 prec theta prec 90 , if (sec theta( 1- sin theta)(sec theta+tan theta))/(sec theta-tan theta)^2=(1+k)/(1-k) , then k is is equal to : 0 prec theta prec 90 के लिए , यदि (sec theta( 1- sin theta)(sec theta+tan theta))/(sec theta-tan theta)^2=(1+k)/(1-k) है, तो k का मान किसके बराबर है ?

If theta in[(pi)/(2),(3 pi)/(2)] then sin^(-1)(sin theta)=

The value of 2 sin^2 theta + k cos^2 2 theta =1 , then k is equal to :

If sin^6 theta + cos^6 theta + k sin^2 2theta =1 , then k is equal to :

If sin theta - cos theta = (sqrt(3)-1)/(2), " then " theta equals

If 3sin theta-4cos theta=5 and 4sin theta+3cos theta=k, then k^(2) is equal to

Maximum value of 8^(cos theta)16^(sin theta) is (8)^(k-1/3) ,then k is equal to

VIKAS GUPTA (BLACK BOOK)-LOGARITHMS -Exercise-5 : Subjective Type Problems
  1. If sin theta=(1)/(2) (a+(1)/(a)) and sin 3 theta=(k)/(2)(a^(3)+(1)/(a^...

    Text Solution

    |

  2. The number N=6^(log(10)40). 5^(log(10)36) is a natural number ,Then su...

    Text Solution

    |

  3. The minimum value of 'c' such that log(b)(a^(log(2)b))=log(a)(b^(log(2...

    Text Solution

    |

  4. How many positive integers b have the property that log(b)729 is a pos...

    Text Solution

    |

  5. The number of negative integral values of x satisfying the inequality ...

    Text Solution

    |

  6. (6)/(5)a^((log(a)x)(log(10)a)(log(a)5))-3^(log(10)((x)/(10)))=9^(log(1...

    Text Solution

    |

  7. If log(5)((a+b)/(3))=(log(5)a+log(5)b)/(2),"then" (a^(4)+b^(4))/(a^(2...

    Text Solution

    |

  8. Let a , b , c , d be positive integers such that (log)a b=3/2a n d(log...

    Text Solution

    |

  9. The number of real values of x satisfying the equation log(10) sqrt(...

    Text Solution

    |

  10. The ordered pair (x,y) satisfying the equation x^(2)=1+6 log(4)y and...

    Text Solution

    |

  11. If log(7)log(7) sqrt(7sqrt(7sqrt(7)))=1-a log(7)2 and log(15)log(15) s...

    Text Solution

    |

  12. The number of ordered pair(s) of (x, y) satisfying the equations log...

    Text Solution

    |

  13. If logb(n)=2 and logn(2b)=2, then b is equal to

    Text Solution

    |

  14. If log(y) x + log(x) y = 2, x^(2)+y = 12 , then the value of xy is

    Text Solution

    |

  15. If x, y satisfy the equation, y^(x)=x^(y) and x=2y, then x^(2)+y^(2)=

    Text Solution

    |

  16. Find the number of real values of x satisfying the equation. log(2)(...

    Text Solution

    |

  17. If x(1), x(2)(x(1) gt x(2)) are the two solutions of the equation 3^...

    Text Solution

    |

  18. Find the number or real values of x satisfying the equation 9^(2log(9)...

    Text Solution

    |

  19. If log(16)(log(root(4)(3))(log(root(3)(5))(x)))=(1)/(2), find x.

    Text Solution

    |

  20. The value [(1)/(6)((2log(10)(1728))/(1+(1)/(2)log(10)(0.36)+(1)/(3)log...

    Text Solution

    |