Home
Class 12
MATHS
Let A=M in i mu m(x^2-2x+7),x in Ra n d...

Let `A=M in i mu m(x^2-2x+7),x in Ra n dB=M in i mu m(x^2-2x+7),x in [2,oo),` then: `(log)_((B-A))(A+B)` is not defined `A+B=13` `(log)_((2B-A))A<1` (d) `(log)_((2A-B))A >1`

A

`log_((B-A))(A+B)` is not defined

B

`A+B=13`

C

`log_((2B-A))A lt 1`

D

`log_((2A-B))A gt 1`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-3 : Comprehension Type Problems|7 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-5 : Subjective Type Problems|19 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-5 : Subjective Type Problems|19 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • MATRICES

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-4 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

Let A=Minimum(x^2-2x+7),x in R and B= Minimum(x^2-2x+7),x in [2,oo), then: (a)(log)_((B-A))(A+B) is not defined (b) A+B=13 (c)(log)_((2B-A))A<1 (d) (log)_((2A-B))A >1

Let X minimum (x^(2)-2x+7),c inRand B="Minimum"(x^(2)-2x+7),x in[2,oo), then:

7 lf If log (x y m 2n and log (x4 y n 2m, then log X is equal to (A) (B) m-n (c) men (D) m n

Evaluate: (i) |(x^2+x y+y^2,x+y ),(x^2-x y+y^2,x-y)| (ii) |(1,(log)_b a),((log)_a b,1)|

If log_(a)x = m and log_(b)x =n then log_(a/b) x= ______

Let f(x) = {{:(a sin^(2n)x,"for",x ge 0 and n rarr oo),(b cos^(2m)x - 1,"for",x lt 0 and m rarr oo):} then

The function f(x)=log x-(2x)/(x+2) is increasing for all A) x in(-oo,0) , B) x in(-oo,1) C) x in(-1,oo) D) x in(0,oo)

L i m i t\ l=(lim)_(x->oo)(pi/2-t a n^-1\ x)/(ln(1-1/x)) equals