Home
Class 12
MATHS
The ordered pair (x,y) satisfying the eq...

The ordered pair `(x,y)` satisfying the equation
`x^(2)=1+6 log_(4)y and y^(2)=2^(x)y+2^(2x+1)`
and `(x_(1), y_(1)) and (x_(2), y_(2))`, then find the value of `log_(2)|x_(1)x_(2)y_(1)y_(2)|`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given equations and find the value of \( \log_{2}|x_{1}x_{2}y_{1}y_{2}| \), we will follow these steps: ### Step 1: Analyze the equations We are given two equations: 1. \( x^2 = 1 + 6 \log_{4} y \) 2. \( y^2 = 2^x y + 2^{2x + 1} \) ### Step 2: Rewrite the second equation From the second equation, we can rearrange it as follows: \[ y^2 - 2^x y - 2^{2x + 1} = 0 \] This is a quadratic equation in \( y \). ### Step 3: Solve the quadratic equation Using the quadratic formula \( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 1, b = -2^x, c = -2^{2x + 1} \): \[ y = \frac{2^x \pm \sqrt{(2^x)^2 - 4 \cdot 1 \cdot (-2^{2x + 1})}}{2 \cdot 1} \] \[ y = \frac{2^x \pm \sqrt{2^{2x} + 4 \cdot 2^{2x + 1}}}{2} \] \[ y = \frac{2^x \pm \sqrt{2^{2x} + 4 \cdot 2^{2x} \cdot 2}}{2} \] \[ y = \frac{2^x \pm \sqrt{2^{2x}(1 + 4)}}{2} \] \[ y = \frac{2^x \pm \sqrt{5 \cdot 2^{2x}}}{2} \] \[ y = \frac{2^x \pm \sqrt{5} \cdot 2^x}{2} \] \[ y = \frac{(1 \pm \sqrt{5}) \cdot 2^x}{2} \] ### Step 4: Determine valid values for \( y \) Thus, we have two possible values for \( y \): \[ y_1 = \frac{(1 + \sqrt{5}) \cdot 2^x}{2}, \quad y_2 = \frac{(1 - \sqrt{5}) \cdot 2^x}{2} \] Since \( y \) must be positive, we will only consider \( y_1 \). ### Step 5: Substitute \( y_1 \) into the first equation Now substitute \( y_1 \) into the first equation: \[ x^2 = 1 + 6 \log_{4} \left( \frac{(1 + \sqrt{5}) \cdot 2^x}{2} \right) \] Using the change of base formula: \[ \log_{4} a = \frac{\log_{2} a}{\log_{2} 4} = \frac{\log_{2} a}{2} \] Thus, \[ x^2 = 1 + 6 \cdot \frac{1}{2} \log_{2} \left( \frac{(1 + \sqrt{5}) \cdot 2^x}{2} \right) \] \[ x^2 = 1 + 3 \log_{2} \left( (1 + \sqrt{5}) \cdot 2^{x-1} \right) \] \[ x^2 = 1 + 3 \left( \log_{2}(1 + \sqrt{5}) + (x - 1) \right) \] \[ x^2 = 1 + 3 \log_{2}(1 + \sqrt{5}) + 3x - 3 \] \[ x^2 - 3x + 2 + 3 \log_{2}(1 + \sqrt{5}) = 0 \] ### Step 6: Solve the quadratic equation for \( x \) Using the quadratic formula: \[ x = \frac{3 \pm \sqrt{(-3)^2 - 4 \cdot 1 \cdot (2 + 3 \log_{2}(1 + \sqrt{5}))}}{2 \cdot 1} \] \[ x = \frac{3 \pm \sqrt{9 - 8 - 12 \log_{2}(1 + \sqrt{5})}}{2} \] \[ x = \frac{3 \pm \sqrt{1 - 12 \log_{2}(1 + \sqrt{5})}}{2} \] ### Step 7: Find \( y_1 \) and \( y_2 \) Substituting the values of \( x \) back into the equation for \( y \): \[ y_1 = \frac{(1 + \sqrt{5}) \cdot 2^{x_1}}{2}, \quad y_2 = \frac{(1 - \sqrt{5}) \cdot 2^{x_2}}{2} \] ### Step 8: Calculate \( \log_{2}|x_{1}x_{2}y_{1}y_{2}| \) Now we need to find: \[ \log_{2}|x_{1}x_{2}y_{1}y_{2}| \] Substituting the values: \[ \log_{2}|x_1 x_2 y_1 y_2| = \log_{2}|x_1 x_2 \cdot \frac{(1 + \sqrt{5}) \cdot 2^{x_1}}{2} \cdot \frac{(1 - \sqrt{5}) \cdot 2^{x_2}}{2}| \] \[ = \log_{2}|x_1 x_2 \cdot \frac{(1 + \sqrt{5})(1 - \sqrt{5})}{4} \cdot 2^{x_1 + x_2}| \] \[ = \log_{2}|x_1 x_2| + \log_{2}\left(\frac{(1 + \sqrt{5})(1 - \sqrt{5})}{4}\right) + \log_{2}(2^{x_1 + x_2}) \] \[ = \log_{2}|x_1 x_2| + \log_{2}(-1) + (x_1 + x_2) \] ### Final Step: Conclusion The final answer will depend on the specific values of \( x_1 \) and \( x_2 \) derived from the quadratic solutions.
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-3 : Comprehension Type Problems|7 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • MATRICES

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-4 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

If x^(2) - y^(2) = 1, (x gt y) then find the value of log_(x-y) (x+y)

If x^(2)-y^(2) =1 , (x gt y) ,then find the value of log(x-y) (x+y)

Number of ordered pair (x, y) satisfying x^(2)+1=y and y^(2)+1=x is

The coordinates of the ends of a focal chord of the parabola y^(2)=4ax are (x_(1),y_(1)) and (x_(2),y_(2)). Then find the value of x_(1)x_(2)+y_(1)y_(2)

1+log_(x)y=log_(2)y

The solutions to the system of equations log_(5)x+log_(27)y=4 and log_(x)5-log_(y)(27)=1 are (x_(1),y_(1)) and (x_(2),y_(2)) then log_(15)(x_(1)x_(2)y_(1)y2) is

If log_(y)x+log_(x)y=7, then the value of (log_(y)x)^(2)+(log_(x)y)^(2), is

If the solutions to the systom of equations given by log_(4095)x+log_(2015)y=2 and log_(x)4096-log_(2)2013=1are(x_(1)y_(1)) and (x_(1),y_(2)) then the value of log_(4)(x_(1)y_(1)x_(2)y_(2)) is

VIKAS GUPTA (BLACK BOOK)-LOGARITHMS -Exercise-5 : Subjective Type Problems
  1. The number N=6^(log(10)40). 5^(log(10)36) is a natural number ,Then su...

    Text Solution

    |

  2. The minimum value of 'c' such that log(b)(a^(log(2)b))=log(a)(b^(log(2...

    Text Solution

    |

  3. How many positive integers b have the property that log(b)729 is a pos...

    Text Solution

    |

  4. The number of negative integral values of x satisfying the inequality ...

    Text Solution

    |

  5. (6)/(5)a^((log(a)x)(log(10)a)(log(a)5))-3^(log(10)((x)/(10)))=9^(log(1...

    Text Solution

    |

  6. If log(5)((a+b)/(3))=(log(5)a+log(5)b)/(2),"then" (a^(4)+b^(4))/(a^(2...

    Text Solution

    |

  7. Let a , b , c , d be positive integers such that (log)a b=3/2a n d(log...

    Text Solution

    |

  8. The number of real values of x satisfying the equation log(10) sqrt(...

    Text Solution

    |

  9. The ordered pair (x,y) satisfying the equation x^(2)=1+6 log(4)y and...

    Text Solution

    |

  10. If log(7)log(7) sqrt(7sqrt(7sqrt(7)))=1-a log(7)2 and log(15)log(15) s...

    Text Solution

    |

  11. The number of ordered pair(s) of (x, y) satisfying the equations log...

    Text Solution

    |

  12. If logb(n)=2 and logn(2b)=2, then b is equal to

    Text Solution

    |

  13. If log(y) x + log(x) y = 2, x^(2)+y = 12 , then the value of xy is

    Text Solution

    |

  14. If x, y satisfy the equation, y^(x)=x^(y) and x=2y, then x^(2)+y^(2)=

    Text Solution

    |

  15. Find the number of real values of x satisfying the equation. log(2)(...

    Text Solution

    |

  16. If x(1), x(2)(x(1) gt x(2)) are the two solutions of the equation 3^...

    Text Solution

    |

  17. Find the number or real values of x satisfying the equation 9^(2log(9)...

    Text Solution

    |

  18. If log(16)(log(root(4)(3))(log(root(3)(5))(x)))=(1)/(2), find x.

    Text Solution

    |

  19. The value [(1)/(6)((2log(10)(1728))/(1+(1)/(2)log(10)(0.36)+(1)/(3)log...

    Text Solution

    |