Home
Class 12
MATHS
The value [(1)/(6)((2log(10)(1728))/(1+(...

The value `[(1)/(6)((2log_(10)(1728))/(1+(1)/(2)log_(10)(0.36)+(1)/(3)log_(10)8))^(1//2)]^(-1)` is :

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given expression \(\left[\frac{1}{6}\left(\frac{2\log_{10}(1728)}{1+\frac{1}{2}\log_{10}(0.36)+\frac{1}{3}\log_{10}(8)}\right)^{\frac{1}{2}}\right]^{-1}\), we will follow these steps: ### Step 1: Simplify \(\log_{10}(1728)\) First, we can express \(1728\) in terms of its prime factors: \[ 1728 = 12^3 \] Thus, \[ \log_{10}(1728) = \log_{10}(12^3) = 3\log_{10}(12) \] ### Step 2: Simplify the denominator Now we simplify the denominator: \[ 1 + \frac{1}{2}\log_{10}(0.36) + \frac{1}{3}\log_{10}(8) \] We can express \(0.36\) and \(8\) in terms of their logarithms: \[ 0.36 = \left(\frac{6}{10}\right)^2 = \frac{36}{100} \Rightarrow \log_{10}(0.36) = \log_{10}(36) - \log_{10}(100) = 2\log_{10}(6) - 2 \] \[ 8 = 2^3 \Rightarrow \log_{10}(8) = 3\log_{10}(2) \] Substituting these values back, we get: \[ 1 + \frac{1}{2}(2\log_{10}(6) - 2) + \frac{1}{3}(3\log_{10}(2)) = 1 + \log_{10}(6) - 1 + \log_{10}(2) = \log_{10}(6) + \log_{10}(2) \] Using the property of logarithms: \[ \log_{10}(6) + \log_{10}(2) = \log_{10}(12) \] ### Step 3: Substitute back into the expression Now substituting back into our expression: \[ \frac{2\log_{10}(1728)}{1+\frac{1}{2}\log_{10}(0.36)+\frac{1}{3}\log_{10}(8)} = \frac{2(3\log_{10}(12))}{\log_{10}(12)} = 6 \] ### Step 4: Final expression Now we substitute this back into the original expression: \[ \left[\frac{1}{6}(6)^{\frac{1}{2}}\right]^{-1} = \left[\frac{1}{6} \cdot \sqrt{6}\right]^{-1} = \frac{6}{\sqrt{6}} = \sqrt{6} \] ### Final Answer Thus, the value of the given expression is: \[ \sqrt{6} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-3 : Comprehension Type Problems|7 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • MATRICES

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-4 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

The value of (1)/(5) log_(10) 3125 -4 log_(10)2 +log_(10)32 is

Solve :((1)/(2))^(log_(10)a^(2))+2>(3)/(2^(log_(10)(-a)))

(log_(10)x)^(2)+log_(10)x^(2)=(log_(10)2)^(2)-1

log_(10)x-(1)/(2)log_(10)(x-(1)/(2))=log_(10)(x+(1)/(2))-(1)/(2)log_(10)(x+(1)/(8))

(1+(1)/(2x))log_(10)3+log_(10)2=log_(10)(27-sqrt(3))

(1)/(3)log_(10)125-2log_(10)4+log_(10)32

Find log_(10)1((1)/(2))+log_(10)1((1)/(3))+log_(10)1((1)/(4))+ upto 198 terms

What is the value of (1/3 log_(10)125 - 2log_(10)4 + log_(10)32 + log_(10)I) ?

log_(10)^(2) x + log_(10) x^(2) = log_(10)^(2) 2 - 1

VIKAS GUPTA (BLACK BOOK)-LOGARITHMS -Exercise-5 : Subjective Type Problems
  1. The number N=6^(log(10)40). 5^(log(10)36) is a natural number ,Then su...

    Text Solution

    |

  2. The minimum value of 'c' such that log(b)(a^(log(2)b))=log(a)(b^(log(2...

    Text Solution

    |

  3. How many positive integers b have the property that log(b)729 is a pos...

    Text Solution

    |

  4. The number of negative integral values of x satisfying the inequality ...

    Text Solution

    |

  5. (6)/(5)a^((log(a)x)(log(10)a)(log(a)5))-3^(log(10)((x)/(10)))=9^(log(1...

    Text Solution

    |

  6. If log(5)((a+b)/(3))=(log(5)a+log(5)b)/(2),"then" (a^(4)+b^(4))/(a^(2...

    Text Solution

    |

  7. Let a , b , c , d be positive integers such that (log)a b=3/2a n d(log...

    Text Solution

    |

  8. The number of real values of x satisfying the equation log(10) sqrt(...

    Text Solution

    |

  9. The ordered pair (x,y) satisfying the equation x^(2)=1+6 log(4)y and...

    Text Solution

    |

  10. If log(7)log(7) sqrt(7sqrt(7sqrt(7)))=1-a log(7)2 and log(15)log(15) s...

    Text Solution

    |

  11. The number of ordered pair(s) of (x, y) satisfying the equations log...

    Text Solution

    |

  12. If logb(n)=2 and logn(2b)=2, then b is equal to

    Text Solution

    |

  13. If log(y) x + log(x) y = 2, x^(2)+y = 12 , then the value of xy is

    Text Solution

    |

  14. If x, y satisfy the equation, y^(x)=x^(y) and x=2y, then x^(2)+y^(2)=

    Text Solution

    |

  15. Find the number of real values of x satisfying the equation. log(2)(...

    Text Solution

    |

  16. If x(1), x(2)(x(1) gt x(2)) are the two solutions of the equation 3^...

    Text Solution

    |

  17. Find the number or real values of x satisfying the equation 9^(2log(9)...

    Text Solution

    |

  18. If log(16)(log(root(4)(3))(log(root(3)(5))(x)))=(1)/(2), find x.

    Text Solution

    |

  19. The value [(1)/(6)((2log(10)(1728))/(1+(1)/(2)log(10)(0.36)+(1)/(3)log...

    Text Solution

    |