Home
Class 12
MATHS
The points A(0, 0), B(cos alpha, sin alp...

The points `A(0, 0), B(cos alpha, sin alpha) and C(cos beta, sin beta)` are the vertices of a right angled triangle if :

A

`sin((alpha-beta)/(2))=(1)/(sqrt(2))`

B

`cos((alpha-beta)/(2))=-(1)/(sqrt(2))`

C

`cos((alpha-beta)/(2))=(1)/(sqrt(2))`

D

`sin((alpha-beta)/(2))=-(1)/(sqrt(2))`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C
Promotional Banner

Topper's Solved these Questions

  • STRAIGHT LINES

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-3 : Comprehension Type Problems|4 Videos
  • STRAIGHT LINES

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-5 : Subjective Type Problems|10 Videos
  • STRAIGHT LINES

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-5 : Subjective Type Problems|10 Videos
  • SOLUTION OF TRIANGLES

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-5 : Subjective Type Problems|12 Videos
  • TRIGONOMETRIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-5 : Subjective Type Problems|9 Videos

Similar Questions

Explore conceptually related problems

The distance between the points (a cos alpha,a sin alpha) and (a cos beta,a sin beta) where a> 0

The distance between the points (a cos alpha,a sin alpha) and (a cos beta,a sin beta) where a>0

If sin alpha+sin beta=a and cos alpha-cos beta=b then

Delta ABC has vertices A(a cos alpha,a sin alpha),B(a cos beta,a sin beta) and C(a cos gamma,a sin gamma) then its orthocentre is

Find the area of the triangle whose vertices are : (a cos alpha, b sin alpha), (a cos beta, b sin beta), (a cos gamma, b sin gamma)

P(cos alpha,sin alpha),Q(cos beta,sin beta),R(cos gamma,sin gamma) are vertices of triangle whose orthocenter is (0,0) then the value of cos(alpha-beta)+cos(beta-gamma)+cos(gamma-alpha) is

Let A = (cos alpha, sin alpha), B = (cos beta , sin beta), C = (cos gamma, sin gamma) . If origin is the orthocentre of the Delta ABC , then the value of sum cos (2 alpha - beta - gamma)= ____________

If A=(cos alpha,sin alpha,0), B=(cos beta,sin beta,0),C=(cos gamma,sin gamma,0) are vertices of Delta ABC and cos alpha+cos beta+cos gamma=3a, sin alpha+sin beta+sin gamma=3b then orthocentre is

If origin is the orthocenter of a triangle formed by the points (cos alpha*sin alpha,0)*(cos beta,sin beta.0),(cos gamma,sin gamma,0) then sum cos(2 alpha-beta-gamma)=

If sin alpha sin beta-cos alpha cos beta+1=0, then the value of 1+cot alpha tan beta is