Home
Class 12
MATHS
If the sides a, b, c of a triangle ABC a...

If the sides a, b, c of a triangle ABC are the roots of the equation `x^(3)-13x^(2)+54x-72=0`, then the value of `(cosA)/(a)+(cosB)/(b)+(cosC)/(c )` is equal to :

A

`(61)/(144)`

B

`(61)/(72)`

C

`(169)/(144)`

D

`(59)/(144)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\frac{\cos A}{a} + \frac{\cos B}{b} + \frac{\cos C}{c}\) given that the sides \(a\), \(b\), and \(c\) of triangle \(ABC\) are the roots of the polynomial equation \(x^3 - 13x^2 + 54x - 72 = 0\). ### Step 1: Find the roots of the polynomial We start by identifying the roots of the polynomial equation \(x^3 - 13x^2 + 54x - 72 = 0\). We can use the Rational Root Theorem to test for possible rational roots. Testing \(x = 2\): \[ 2^3 - 13(2^2) + 54(2) - 72 = 8 - 52 + 108 - 72 = -16 + 108 - 72 = 20 \quad \text{(not a root)} \] Testing \(x = 3\): \[ 3^3 - 13(3^2) + 54(3) - 72 = 27 - 117 + 162 - 72 = 27 - 117 + 162 - 72 = 0 \quad \text{(is a root)} \] Now that we have found \(x = 3\) as a root, we can perform synthetic division to factor the polynomial: \[ \begin{array}{r|rrrr} 3 & 1 & -13 & 54 & -72 \\ & & 3 & -30 & 72 \\ \hline & 1 & -10 & 24 & 0 \\ \end{array} \] This gives us \(x^2 - 10x + 24 = 0\). ### Step 2: Solve the quadratic equation Next, we solve the quadratic equation \(x^2 - 10x + 24 = 0\) using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{10 \pm \sqrt{(-10)^2 - 4(1)(24)}}{2(1)} = \frac{10 \pm \sqrt{100 - 96}}{2} = \frac{10 \pm 2}{2} \] This gives us the roots: \[ x = \frac{12}{2} = 6 \quad \text{and} \quad x = \frac{8}{2} = 4 \] Thus, the roots of the polynomial are \(a = 3\), \(b = 4\), and \(c = 6\). ### Step 3: Calculate \(\frac{\cos A}{a} + \frac{\cos B}{b} + \frac{\cos C}{c}\) Using the cosine rule: \[ \cos A = \frac{b^2 + c^2 - a^2}{2bc}, \quad \cos B = \frac{a^2 + c^2 - b^2}{2ac}, \quad \cos C = \frac{a^2 + b^2 - c^2}{2ab} \] Substituting \(a = 3\), \(b = 4\), and \(c = 6\): \[ \cos A = \frac{4^2 + 6^2 - 3^2}{2 \cdot 4 \cdot 6} = \frac{16 + 36 - 9}{48} = \frac{43}{48} \] \[ \cos B = \frac{3^2 + 6^2 - 4^2}{2 \cdot 3 \cdot 6} = \frac{9 + 36 - 16}{36} = \frac{29}{36} \] \[ \cos C = \frac{3^2 + 4^2 - 6^2}{2 \cdot 3 \cdot 4} = \frac{9 + 16 - 36}{24} = \frac{-11}{24} \] Now we calculate: \[ \frac{\cos A}{a} = \frac{43/48}{3} = \frac{43}{144}, \quad \frac{\cos B}{b} = \frac{29/36}{4} = \frac{29}{144}, \quad \frac{\cos C}{c} = \frac{-11/24}{6} = \frac{-11}{144} \] ### Step 4: Combine the results Now we combine these fractions: \[ \frac{\cos A}{a} + \frac{\cos B}{b} + \frac{\cos C}{c} = \frac{43}{144} + \frac{29}{144} - \frac{11}{144} = \frac{43 + 29 - 11}{144} = \frac{61}{144} \] ### Final Answer Thus, the value of \(\frac{\cos A}{a} + \frac{\cos B}{b} + \frac{\cos C}{c}\) is: \[ \boxed{\frac{61}{144}} \]
Promotional Banner

Topper's Solved these Questions

  • SOLUTION OF TRIANGLES

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-2 : One or More than One Answer is/are Correct|15 Videos
  • SOLUTION OF TRIANGLES

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-3 : Comprehension Type Problems|16 Videos
  • SEQUENCE AND SERIES

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|21 Videos
  • STRAIGHT LINES

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-5 : Subjective Type Problems|10 Videos

Similar Questions

Explore conceptually related problems

In DeltaABC,(cosA)/(a)+(cosB)/(b)+(cosC)/(c) =

In a triangle ABC, if the sides a,b,c, are roots of x^3-11 x^2+38 x-40=0, then find the value of (cosA)/a+(cosB)/b+(cosC)/c

In a DeltaABC , if the sides a, b, c are the roots of the equation x^(3)-11x^(2)+38x-40=0 , then (cosA)/a+(cosB)/b+(cosC)/c=

In a Delta ABC, the side a, b, and c are such that they are roots of x^(3) -11x ^(2) +38x -40=0. Then the value of (cos A)/(a )+ (cos B)/(b)+ (cos C)/(c ).

If the roots of the equation 10x^(3)-cx^(2)-54x-27=0 are in harmonic progression the value of c is

In a Delta ABC, ifsin Aandsin B are the roots of the equation c^(2)x^(2)-c(a+b)x+ab=0 then find /_C .

If angles A and B of Delta ABC(A!=B) are the roots of equation cos3x=(1)/(3), then the angle C can be

In triangle ABC, 2(bc cosA-ac cosB-ab cosC)=

If the roots of the equation (b-c)x^(2)+(c-a)x+(a-b)=0 are equal,then prove that 2b=a+c