Home
Class 12
MATHS
If Tan^(-1) x + Tan^(-1) y + Tan^(-1) z ...

If `Tan^(-1) x + Tan^(-1) y + Tan^(-1) z = pi` then prove that `x+y+z = xyz`.

Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    SRISIRI PUBLICATION|Exercise SAQ (1D Star Q)|22 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    SRISIRI PUBLICATION|Exercise SAQ (2D Hard Q, 3D Mis. Q)|11 Videos
  • HYPERBOLIC FUNCTIONS

    SRISIRI PUBLICATION|Exercise SPQ|8 Videos
  • IPE SCANNER (TEXTUAL BITS)

    SRISIRI PUBLICATION|Exercise APPLICATIONS OF DERIVATIVES|48 Videos

Similar Questions

Explore conceptually related problems

If Tan^(-1)x+Tan^(-1)y + Tan^(-1)z = (pi)/2 , then prove that xy + yz + zx = 1

If Sin^(-1)x + Sin^(-1)y + Sin^(-1)z = pi , then prove that x^(4) + y^(4) + z^(4) + 4x^(2)y^(2)z^(2) = 2(x^(2)y^(2)+y^(2)z^(2)+z^(2)x^(2)) .

If tan^(-1)x+tan^(-1)y+tan^(-1)z=pi then x+y+z=

If tan^(-1)x+tan^(-1)y+tan^(-1)z=(pi)/2 then

If Tan^(-1)x+Tan^(-1)y+Tan^(-1)z=pi//2 then 1 - xy - yz - zx =

Tan^(-1)(x) + Tan^(-1)(y) = c is the solution of