Home
Class 12
MATHS
If f(x)=|x|/(x) then show that {:(" L...

If `f(x)=|x|/(x)` then show that `{:(" Lt"),(xrarr0):}` f(x) does not exist .

Promotional Banner

Topper's Solved these Questions

  • LIMITS & CONTINUITY

    SRISIRI PUBLICATION|Exercise PROBLEMS ON CONTINUITY|9 Videos
  • IPE:MAY-2018[AP]

    SRISIRI PUBLICATION|Exercise SECTION-C (SAQs)|7 Videos
  • LOCUS

    SRISIRI PUBLICATION|Exercise 2 D (SPQ)|6 Videos

Similar Questions

Explore conceptually related problems

Show that {:(" Lt"),(xrarr0):}(e^(3x)-1)/(x)=3

If f(x) = (|x|)/x then show that Lt_(x to 0) f(x) does not exist.

Show that {:(" Lt"),(xrarr0+):}((2|x|)/(x)+x+1)=3

Show that Lt_(xto0)(|x|)/x does not exist.

Evaluate {:(" Lt"),(xrarr0):}(1-cosx)/(x)

Evaluate {:(" Lt"),(xrarr0):}(e^(x)-sinx-1)/(x)

Evaluate {:(" Lt"),(xrarr0):}(e^(sinx)-1)/(x)

Evaluate {:(" Lt"),(xrarr0):}(e^x+e^(3))/(x)

Evaluate {:(" Lt"),(xrarr0):}(log(1+5x))/(x)

Evaluate {:(" Lt"),(xrarr0):}(e^(7x)-1)/(x)