Home
Class 12
PHYSICS
If the work required to move the conduct...

If the work required to move the conductor shown in figure, one full turn in the positive direction at a rotational frequency `N` revolutions per minute, if `vec(B)=B_(0)hat(a)_(r)(B_(0)` is positive constant and `hat(a)_(r)` is a unit vector in radial direciton `) ,` is `y pi r B_(0)il`. Then `y` is .

Text Solution

Verified by Experts

The correct Answer is:
2

The magnetic force on the conductor is
`vec(F)_(B)=Ivec(L)xxvec(B)=ILhat(k)xxB_(0)hat(a)_(r)=B_(0)IL(hat(a)_(phi))`
External force is
`vec(F)_(ext)=B_(0)IL(-hat(a)_(phi))`
Where `hat(a)_(phi)` is a unit vector in tangential direction. Therefore work done requuired to turn the conductor in one full revolution is `:`
`W=int_(0)^(2pi)B_(0)IL(-hat(a)_(phi)).rdphihat(a)_(phi)=-2pirB_(0)IL`
The negative sign shows that field work. The fact that work is down around a closed path shows that the force is non`-` conservative in this case.
Promotional Banner

Topper's Solved these Questions

  • MOVING CHARGES AND MAGNETISM

    NARAYNA|Exercise LEVEL-VI (SINGLE ANSWER QUESTION)|81 Videos
  • MOVING CHARGES AND MAGNETISM

    NARAYNA|Exercise Level =I (H.W)|42 Videos
  • MOVING CHARGES AND MAGNETISM

    NARAYNA|Exercise NCERT Based Questions|20 Videos
  • MAGNETISM AND MATTER

    NARAYNA|Exercise EXERCISE - 4 (SINGLE ANSWER TYPE QUESTION)|17 Videos
  • NUCLEAR PHYSICS

    NARAYNA|Exercise LEVEL-II-(H.W)|9 Videos

Similar Questions

Explore conceptually related problems

Find the work and power required to move the conductor of length l shown in the fig. one full turn in the anticlockwise direction at a rotational frequency of n revolutions per second if the magnetic field is of magnitude B_(0) everywhere and points radially outwards from Z-axis. The figure shows that surface traced by the wire AB.

In a region at a distance r from z-axis, magnetic field vec(B) = B_(0)rt hat(k) is present where B_(0) is constant and t is time. Then the magnetic of induced electric field at a distance r from z-axis is given by

A magnetic field vec(B) = B_(0)hat(j) , exists in the region a ltxlt2a , and vec(B) = -B_(0) hat(j) , in the region 2a lt xlt 3a , where B_(0) is a positive constant . A positive point charge moving with a velocity vec(v) = v_(0) hat (i) , where v_(0) is a positive constant , enters the magnetic field at x= a . The trajectory of the charge in this region can be like

If vec(a)=4hat(i)-hat(j),vec(b)=-3hat(i)+2hat(j)and vec(c)=-hat(k). Then the unit vector hat( r) along the direction of sum of these vectors will be

Motion in two dimensions, in a plane can be studied by expressing position, velocity and acceleration as vectors in cartesian coordinates A=A_(x)hat(i) + A_(y)hat(j) , where hat(i) and hat(j) are unit vector along x and y-directions, respectively and A_(x) and A_(y) are corresponding components of A. Motion can also be studied by expressing vectors in circular polar coordinates as A= A_(r)hat(r) + A_(theta) hat(theta) , where hat(r)=(r)/(r)=cos theta hat(i)+sin theta hat (j) and hat(theta)=-sin theta hat(i) + cos theta hat (j) are unit vectors along direction in which r and theta are increasing. (a) Express hat(i) and hat (j) in terms of hat(r) and hat (theta) . (b) Show that both hat(r) and hat(theta) are unit vectors and are perpendicular to each other. (c) Show that (d)/(dt)(hat(r))= omega hat(theta) , where omega=(d theta)/(dt) and (d)/(dt) (hat(theta))=-thetahat(r) . (d) For a particle moving along a spiral given by r=a theta hat(r) , where a = 1 (unit), find dimensions of a . (e) Find velocity and acceleration in polar vector representation for particle moving along spiral described in (d) above.

A particle is moving with a position vector, vec(r)=[a_(0) sin (2pi t) hat(i)+a_(0) cos (2pi t) hat(j)] . Then -

A vector vec(A) When added to the vector vec(B)=3hat(i)+4hat(j) yields a resultant vector that is in the positive y-direction and has a magnitude equal to that of vec(B) . Find the magnitude of vec(A) .

A vector vec A when added to the vector vec B = 3. 0 hat i+ 4 hat j yields a resultant vector that is in the positive y-direction and has a magnintude equal to that of vec B . Find the magnitude of vec A .

NARAYNA-MOVING CHARGES AND MAGNETISM-LEVEL-V (SINGLE ANSWER QUESTION)
  1. A straight conductor of length 60cm and mass 10gm is suspended horizon...

    Text Solution

    |

  2. A thin wire is bent in the form of a semi circular ring of radius R=0....

    Text Solution

    |

  3. A particle having a charge q=1C and mass m=0.5kg is projected on a rou...

    Text Solution

    |

  4. A long straight wire carries a current I(0)=100amp , a particle having...

    Text Solution

    |

  5. A particle of mass m and charge + q is projected from origin with velo...

    Text Solution

    |

  6. If the work required to move the conductor shown in figure, one full t...

    Text Solution

    |

  7. A long straight metal rod has a very long hole of radius a drilled par...

    Text Solution

    |

  8. There exists a uniform and constant magnetic field of strength B in t...

    Text Solution

    |

  9. A particle of mass m having a charge q enters into a circular region o...

    Text Solution

    |

  10. A loop, carring a current i, lying in the plane of the paper, is in th...

    Text Solution

    |

  11. A rectangular loop PQRS made from a uniform wire has length a, width b...

    Text Solution

    |

  12. A insulated square frame ABCD of side a is able to rotate about one of...

    Text Solution

    |

  13. A bar of mass m slides on a smooth horizontal conducting rail. A const...

    Text Solution

    |

  14. An infinte wire place along z-axis has current I(1) in positive z-dire...

    Text Solution

    |

  15. A charged particle carrying charge q=10 muC moves with velocity v1=10^...

    Text Solution

    |

  16. Deuterons in a cyclotron describes a circle of radius 32.0cm. Just bef...

    Text Solution

    |

  17. A ring of radius R having unifromly distributed charge Q is mounted on...

    Text Solution

    |

  18. The region between x=o and x = L is filled with uniform, steady magn...

    Text Solution

    |

  19. A uniform constant magnetic field B is directed at an angle of 45^(@) ...

    Text Solution

    |

  20. An electron in the ground state of hydrogen atom is revolving in antic...

    Text Solution

    |