Home
Class 9
MATHS
If x+1/x=sqrt(5) , find the values of x^...

If `x+1/x=sqrt(5)` , find the values of `x^2+1/(x^2)` and `x^4+1/(x^4)`

Text Solution

AI Generated Solution

To solve the problem, we need to find the values of \( x^2 + \frac{1}{x^2} \) and \( x^4 + \frac{1}{x^4} \) given that \( x + \frac{1}{x} = \sqrt{5} \). ### Step 1: Find \( x^2 + \frac{1}{x^2} \) We start with the equation: \[ x + \frac{1}{x} = \sqrt{5} ...
Promotional Banner

Topper's Solved these Questions

  • AREA OF PARALLELOGRAMS AND TRIANGLES

    RD SHARMA|Exercise All Questions|205 Videos

Similar Questions

Explore conceptually related problems

If x = 9 - 4sqrt(5) , find the value of x^(2) +(1)/(x^(2)) .

If x = (5-sqrt(21))/2 , find the value of x+(1)/(x)

If x-(1)/(x)=3, find the values of x^(2)+(1)/(x^(2)) and x^(4)+(1)/(x^(4))

If x^2 + 1/x^2 = 6 , find the value of x^4 + 1/x^4

If x-1/x=5 , find the value x^(2)+1/(x^(2)) and x^(4)+1/(x^(4))

If x=1/(2+sqrt3) ,find the value of x^(3)-x^(2)-11x+4

If x=sqrt(2)+1 find the value of x^(4)-4x^(3)+4x^(2)+1

If x - 1/x = 3 , find the value of : ( a ) x^2 + 1/x^2 ( b ) x^4 + 1/x^4