Home
Class 9
MATHS
If x^2+1/(x^2)=79 , find the value of x+...

If `x^2+1/(x^2)=79 ,` find the value of `x+1/x`

Text Solution

AI Generated Solution

To find the value of \( x + \frac{1}{x} \) given that \( x^2 + \frac{1}{x^2} = 79 \), we can follow these steps: ### Step 1: Use the identity for squaring \( x + \frac{1}{x} \) We know that: \[ \left( x + \frac{1}{x} \right)^2 = x^2 + 2 + \frac{1}{x^2} \] ...
Promotional Banner

Topper's Solved these Questions

  • AREA OF PARALLELOGRAMS AND TRIANGLES

    RD SHARMA|Exercise All Questions|205 Videos

Similar Questions

Explore conceptually related problems

If x - 1/x = a , find the value of x^2 + 1/x^2

If x + 1/x = 1 , find the value of x^2 + 1/x^2

Find the value of x : -1/5 = 2/x

x^(2)+(1)/(x^(2))=79, findthevalueof x+(1)/(x)

If x^2+1/x^2=17/4 then find the value of x^2-1/x^2

If x^2 - 1 = 3 , find the value of x

If x +(1)/(x) =2 , find the value of (x^2 +(1)/(x^2))(x^3 +(1)/(x^3))

If x^(2)+(1)/(x^(2))=18, find the values of x+(1)/(x) and -(1)/(x)

If x+(1)/(x)=2 find the value of : x^2+1/x^2