Home
Class 9
MATHS
If a+b+c=0 and a^2+b^2+c^2=16 , find the...

If `a+b+c=0` and `a^2+b^2+c^2=16` , find the value of `a b+b c+c a`

Text Solution

AI Generated Solution

To find the value of \( ab + bc + ca \) given that \( a + b + c = 0 \) and \( a^2 + b^2 + c^2 = 16 \), we can follow these steps: ### Step 1: Square the sum \( a + b + c \) Since we know that \( a + b + c = 0 \), we can square both sides: \[ (a + b + c)^2 = 0^2 \] This simplifies to: ...
Promotional Banner

Topper's Solved these Questions

  • AREA OF PARALLELOGRAMS AND TRIANGLES

    RD SHARMA|Exercise All Questions|205 Videos

Similar Questions

Explore conceptually related problems

If a + b + c = 0 and a^(2) + b^(2) + c^(3) = 4, them find the value of a^(4) + b^(4) +c^(4) .

If a+b+c=0 and a^(2)+b^(2)+c^(2)=1 then find the value of 2(a^(4)+b^(4)+c^(4))

If a = 2 , b = -2 and c = 2 , then find the value of a^2b + b^2c + c^2a

If a+b+c=0 and a^(2)+b^(2)+c^(2)=1, then the value of a^(4)+b^(4)+c^(4) is

If a^(2)+b^(2)+c^(2)=16 and ab+bc+ca=10 find the value of a+b+c

If a + b + c = 0 , then find the value of ( ( a + b ) / c + ( b + c )/a + ( c + a ) / b ) times ( a /( b + c ) + b /( c + a ) + c /( a + b ) ) is :

If a+b+c=0&a^(2)+b^(2)+c^(2)=1 then the value of a^(4)+b^(4)+c^(4) is

Suppose a,b,c are in AP and a^(2),b^(2),c^(2) are in GP, If agtbgtc and a+b+c=(3)/(2) , than find the values of a and c.

If [a b c]=2 , then find the value of [(a+2b-c)(a-b)(a-b-c)] .

If   ( a -5 )^2 + ( b - c )^2 + ( c - d )^2 + ( b + c + d - 9 )^2 = 0 , then find the value of ( a + b + c ) ( b + c + d ) is