Home
Class 9
MATHS
Prove that: (a+b)^3=a^3+b^3+3a b(a+b)...

Prove that: `(a+b)^3=a^3+b^3+3a b(a+b)`

Text Solution

Verified by Experts

1409024 `(a+b)^3=a^3+b^3+3a b(a+b)`
`(a+b)^3=(a+b)^2(a+b)`
`(a+b)^3=(a^2+2ab+b^2)(a+b)`
`(a+b)^3=a^3+2a^2b+ab^2+a^2b+2ab^2+b^3`
`(a+b)^3=a^3+3a^2b+3ab^2+b^3`
`(a+b)^3=a^3+b^3+3a b(a+b)`
Hence Proved.
Promotional Banner

Topper's Solved these Questions

  • AREA OF PARALLELOGRAMS AND TRIANGLES

    RD SHARMA|Exercise All Questions|205 Videos

Similar Questions

Explore conceptually related problems

Prove that: (a-b)^(3)=a^(3)-b^(3)-3ab(a-b)

Prove that (a+b+c)^(3)-a^(3)-b^(3)-c^(3)=3(a+b)(b+c)(c+a)

Prove that (a+b+c)^(3)-a^(3)-b^(3)-c^(3)=3(a+b)(b+c)(c+a) .

Prove that (a+b+c)^(3) =a^(3)+b^(3)+c^(3)+3(b+c) (c+a) (a+b)

Prove that :(a+b+c)^(3)-a^(3)-b^(3)-c^(3)=3(a+b)(b+c)(c+a)

Prove that : (a+b)^(3)+(b+c)^(3)+(c+a)^(3)-3(a+b)(b+c)(c+a)=2(a^(3)+b^(3)+c^(3)-3abc)

Prove that: a^(3)+b^(3)+c^(3)-3abc=(1)/(2)(a+b+c){a-b)^(2)+(b-c)^(2)+(c-a)^(2)}

If a,b,c are in A.P.,prove that 8b^(3)-a^(3)-c^(3)=3ac(a+c)

a(a+b)^3-3a^2b(a+b)

If a, b, c are in GP, prove that a^(3), b^(3), c^(3) are in GP.