Home
Class 9
MATHS
Prove that: (a-b)^3=a^3-b^3-3a b(a-b)...

Prove that: `(a-b)^3=a^3-b^3-3a b(a-b)`

Text Solution

AI Generated Solution

To prove the identity \((a-b)^3 = a^3 - b^3 - 3ab(a-b)\), we will start from the left-hand side and simplify it step by step. ### Step 1: Expand the left-hand side We start with the left-hand side: \[ (a-b)^3 \] We can rewrite this as: ...
Promotional Banner

Topper's Solved these Questions

  • AREA OF PARALLELOGRAMS AND TRIANGLES

    RD SHARMA|Exercise All Questions|205 Videos

Similar Questions

Explore conceptually related problems

Prove that: (a+b)^(3)=a^(3)+b^(3)+3ab(a+b)

Prove that :(a+b+c)^(3)-a^(3)-b^(3)-c^(3)=3(a+b)(b+c)(c+a)

Prove that (a+b+c)^(3)-a^(3)-b^(3)-c^(3)=3(a+b)(b+c)(c+a)

Prove that (a+b+c)^(3)-a^(3)-b^(3)-c^(3)=3(a+b)(b+c)(c+a) .

a(a+b)^3-3a^2b(a+b)

Prove that (a+b+c)^(3) =a^(3)+b^(3)+c^(3)+3(b+c) (c+a) (a+b)

If a,b,c are in A.P.,prove that 8b^(3)-a^(3)-c^(3)=3ac(a+c)

Prove that: a^(3)+b^(3)+c^(3)-3abc=(1)/(2)(a+b+c){a-b)^(2)+(b-c)^(2)+(c-a)^(2)}

Prove that : (a+b)^(3)+(b+c)^(3)+(c+a)^(3)-3(a+b)(b+c)(c+a)=2(a^(3)+b^(3)+c^(3)-3abc)

Prove that a^(3)+b^(3)+c^(3)-3abc=(1)/(2)(a+b+c){(a-b)^(2)+(b-c)^(2)+(c-a)^(2)}