Home
Class 9
MATHS
If x^2+1/(x^2)=7 , find the value of x^3...

If `x^2+1/(x^2)=7` , find the value of `x^3+1/(x^3)`

Text Solution

AI Generated Solution

To find the value of \( x^3 + \frac{1}{x^3} \) given that \( x^2 + \frac{1}{x^2} = 7 \), we can follow these steps: ### Step 1: Use the identity for \( x^2 + \frac{1}{x^2} \) We know that: \[ x^2 + \frac{1}{x^2} = \left( x + \frac{1}{x} \right)^2 - 2 \] Let \( y = x + \frac{1}{x} \). Then we can write: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • AREA OF PARALLELOGRAMS AND TRIANGLES

    RD SHARMA|Exercise All Questions|205 Videos

Similar Questions

Explore conceptually related problems

If x+(1)/(x)=7, find the value of x^(3)+(1)/(x^(3))

If x^(2)+(1)/(x^(2))=98, find the value of x^(3)+1/x^(3)

Knowledge Check

  • If x +(1)/(x) =2 , find the value of (x^2 +(1)/(x^2))(x^3 +(1)/(x^3))

    A
    8
    B
    2
    C
    6
    D
    4
  • If x^(2)+1/(x^(2))=7 , then the value of x^(3)+1/(x^(3)) is

    A
    9
    B
    18
    C
    27
    D
    14
  • Similar Questions

    Explore conceptually related problems

    If x^(2)+(1)/(x^(2))=7; find the value x^(3)-(1)/(x^(3))

    If x^(2)+(1)/(x^(2))=98, find the value of x^(3)+(1)/(x^(3))

    If x^(2)+(1)/(x^(2))=83. find the value of x^(3)-1/x^(3)

    If x^(2)+(1)/(x^(2))=51, find the value of x^(3)-(1)/(x^(3))

    If x^2+1/x^2=7, then the value of x^3+1/x^3 Where x>0 is equal to:

    If x-(1)/(x)=3, find the values of x^(2)+(1)/(x^(2)) and x^(4)+(1)/(x^(4))