Home
Class 9
MATHS
If x+y+z=8\ \ a n d\ \ \ x y+y z+z x=20 ...

If `x+y+z=8\ \ a n d\ \ \ x y+y z+z x=20 ,` find the value of `x^3+y^3+z^3-3x y z`

Text Solution

AI Generated Solution

To solve the problem, we need to find the value of \( x^3 + y^3 + z^3 - 3xyz \) given that \( x + y + z = 8 \) and \( xy + yz + zx = 20 \). We can use the algebraic identity: \[ x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx) \] ...
Promotional Banner

Topper's Solved these Questions

  • AREA OF PARALLELOGRAMS AND TRIANGLES

    RD SHARMA|Exercise All Questions|205 Videos

Similar Questions

Explore conceptually related problems

If x + y + z = 6 and x^2 + y^2 + z^2= 20 then the value of x^3 + y^3 + z^3 - 3xyz is

If A=[(x,y,z),(y,z,x),(z,x,y)] and A^3=I_3 and xyz=2 and x+y+z gt 0 find the value of x^3+y^3+z^3 is

Let A=[(x,y,z),(y,z,x),(z,x,y)] , where x, y and z are real numbers such that x + y + z > 0 and xyz = 2 . If A^(2) = I_(3) , then the value of x^(3)+y^(3)+z^(3) is__________.