Home
Class 9
MATHS
a(a+b)^3-3a^2b(a+b)...

`a(a+b)^3-3a^2b(a+b)`

Text Solution

Verified by Experts

`a(a+b)^3-3a^2b(a+b)`
Taking `(a + b)` common in two terms
`=(a+b){a(a+b)^2-3a^2 b}`
Now using:
`(a+b)^2=a^2+b^2+2ab`
`=(a+b){a(a^2+b^2+2ab)-3a^2b}`
`=(a+b){a^3 +ab^2+2a^2b-3a^2b`
`=(a+b){a^3+ab^2-a^2b}`
`=(a+b)a{a^2 +b^2-ab}`
`=a(a+b)(a^2+b^2-ab)`
`therefore a(a + b)^3-3a^2b(a+b)=a(a+b)(a^2+b^2-ab)`
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS OF REAL NUMBER

    RD SHARMA|Exercise All Questions|186 Videos
  • FACTORIZATION OF POLYNOMIAL

    RD SHARMA|Exercise All Questions|220 Videos

Similar Questions

Explore conceptually related problems

a(a+b)^(3)-3a^(2)b(a+b)

((a - b)^(3) - (a +b)^(3))/(2) + a(a^(2) + 3b^(2)) = _____

Factorise each of the following: (i) 8a^3+b^3+12 a^2b+6a b^2 (ii) 8a^3-b^3-12 a^2b+6a b^2 (iii) 27-125 b^3-135 a+225 a^2 (iv) 64 a^3-27 a^3-144 a^2b+108 a b^2 (v) 27 p^3-1/(216)-9/2p^2+1/4p

a^3 - b^3 - 3a^2b+ 3ab^2, by, a^2 + b^2 - 2ab

Verify that (a-b) (a -b) (a-b) = a ^(3) - 3a ^(2) b + 3a b ^(2) - b ^(3)

Verify the (a+b ) (a+b) (a +b) = a ^(3) + 3a ^(2) b + 3a^(2) b + 3a b ^(2) +b ^(3)

If a=7,darr backslash b=5, then the value of a^(3)-b^(3)+3a^(2)b is (a) 218 (b) 307(c)735 (d) 953

The three points [(a+b)(a+2b),(a+b)],[(a+2b)(a+3b),(a+2b)] and [(a+3b)(a+4b),(a+3 b)]

In a square matrix A of order 3 each element a_(ii) is equal to the sum of the roots of the equation x^(2)-(a+b)x+ab=0 each a_(i,i+1) is equal to the product of the roots,each a_(i,i-1) is unity and the rest of the elements are all zero.The value of the |A| is equal to 0 (b) (a+b)^(3)a^(3)-b^(3)(d)(a^(2)+b^(2))(a+b)