Home
Class 9
MATHS
Factorize: (a-2b)^3-512 b^3...

Factorize: `(a-2b)^3-512 b^3`

Text Solution

AI Generated Solution

To factorize the expression \((a - 2b)^3 - 512b^3\), we can follow these steps: ### Step 1: Recognize the form of the expression We notice that \((a - 2b)^3\) is a perfect cube and \(512b^3\) is also a perfect cube since \(512 = 8^3\). Thus, we can rewrite the expression as: \[ (a - 2b)^3 - (8b)^3 \] ...
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS OF REAL NUMBER

    RD SHARMA|Exercise All Questions|186 Videos
  • FACTORIZATION OF POLYNOMIAL

    RD SHARMA|Exercise All Questions|220 Videos

Similar Questions

Explore conceptually related problems

Factorize (a+b)^3-a-b

Factorize: (a+b)^(3)-8(a-b)^(3)

factorize 3(a-2b)^(2)-5(a-2b)

Factorize: (a-3b)^(3)+(3b-c)^(3)+(c-a)^(3)

Factorize: 64a^(3)-b^(3)

Factorize: 8a^(3)-b^(3)-12a^(2)b+6ab^(2)

factorize : (3a+5b)^2-4c^2

Factorize a^(3)+(b-a)^(3)-b^(3) .

Factorize : (a^(2)-b^(2))^(3)+(b^(2)-c^(2))^(3)+(c^(2)-a^(2))^(3)