Home
Class 9
MATHS
Factorize: a^3+3a^2b+3a b^2+b^3-8...

Factorize: `a^3+3a^2b+3a b^2+b^3-8`

Text Solution

AI Generated Solution

To factorize the expression \( a^3 + 3a^2b + 3ab^2 + b^3 - 8 \), we can follow these steps: ### Step 1: Identify the structure of the expression The expression \( a^3 + 3a^2b + 3ab^2 + b^3 \) resembles the expansion of the cube of a binomial, specifically \( (a + b)^3 \). The identity for the cube of a binomial is: \[ (a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 \] Thus, we can rewrite the expression as: ...
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS OF REAL NUMBER

    RD SHARMA|Exercise All Questions|186 Videos
  • FACTORIZATION OF POLYNOMIAL

    RD SHARMA|Exercise All Questions|220 Videos

Similar Questions

Explore conceptually related problems

Factorize: a^(3)+3a^(2)b+3ab^(2)+b^(3)-8

Factorize: a^(3)-3a^(2)b+3ab^(2)-b^(3)+8

Factorize (a+b)^3-a-b

Factorize: a^(3)+b^(3)+a+b

factorize : 9a^2+3a-8b-64b^2

Factorize: 8a^(3)-b^(3)-4ax+2bx

Find the values of the following polynomials at a = -2 and b = 3 : a^3 + 3a^2b + 3ab^2 + b^3

Factorize: 8a^(3)-b^(3)-12a^(2)b+6ab^(2)

Factorize: 8a^(3)+b^(3)+12a^(2)b+6ab^(2)