Home
Class 9
MATHS
Factorize: 64 a^3-27 b^3-144 a^2b+108 a ...

Factorize: `64 a^3-27 b^3-144 a^2b+108 a b^2`

Text Solution

AI Generated Solution

To factorize the expression \(64 a^3 - 27 b^3 - 144 a^2 b + 108 a b^2\), we can follow these steps: ### Step 1: Identify the Cubes First, we can recognize that \(64 a^3\) and \(27 b^3\) are perfect cubes: - \(64 a^3 = (4a)^3\) - \(27 b^3 = (3b)^3\) ### Step 2: Rewrite the Expression ...
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS OF REAL NUMBER

    RD SHARMA|Exercise All Questions|186 Videos
  • FACTORIZATION OF POLYNOMIAL

    RD SHARMA|Exercise All Questions|220 Videos

Similar Questions

Explore conceptually related problems

Factorize: 64a^(3)-b^(3)

Factorise each of the following: (i) 8a^3+b^3+12 a^2b+6a b^2 (ii) 8a^3-b^3-12 a^2b+6a b^2 (iii) 27-125 b^3-135 a+225 a^2 (iv) 64 a^3-27 a^3-144 a^2b+108 a b^2 (v) 27 p^3-1/(216)-9/2p^2+1/4p

Factorize: 27a^(3)+125b^(3)

Factorize (a+b)^3-a-b

Factorize: 8a^(3)-27b^(3)-36a^(2)b+54ab^(2)

Factorize: a^(3)+b^(3)+a+b

Factorize: 32a^(3)+108b^(3)

Factorize: (a-2b)^(3)-512b^(3)

Factorise each of the following : (i) 8a^(3)+b^(3)+12a^(2)b+6ab^(2) (ii) 8a^(3)-b^(3)-12a^(2)b+6ab^(2) (iii) 27-125a^(3)-135a+225a^(2) (iv) 64a^(3)-27b^(3)-144a^(2)b+108ab^(2) (v) 27p^(3)-(1)/(216)-(9)/(2)p^(2)+(1)/(4)p

Factorize: 64a^(3)+125b^(3)+240a^(2)b+300ab^(2)