Home
Class 9
MATHS
Factorize: 27\ p^3-1/(216)-9/2p^2+1/4p...

Factorize: `27\ p^3-1/(216)-9/2p^2+1/4p`

Text Solution

AI Generated Solution

To factorize the expression \( 27p^3 - \frac{1}{216} - \frac{9}{2}p^2 + \frac{1}{4}p \), we will follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ 27p^3 - \frac{1}{216} - \frac{9}{2}p^2 + \frac{1}{4}p \] ...
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS OF REAL NUMBER

    RD SHARMA|Exercise All Questions|186 Videos
  • FACTORIZATION OF POLYNOMIAL

    RD SHARMA|Exercise All Questions|220 Videos

Similar Questions

Explore conceptually related problems

Factorize: p^(3)+27

Factorise each of the following: (i) 8a^3+b^3+12 a^2b+6a b^2 (ii) 8a^3-b^3-12 a^2b+6a b^2 (iii) 27-125 b^3-135 a+225 a^2 (iv) 64 a^3-27 a^3-144 a^2b+108 a b^2 (v) 27 p^3-1/(216)-9/2p^2+1/4p

Factorise each of the following : (i) 8a^(3)+b^(3)+12a^(2)b+6ab^(2) (ii) 8a^(3)-b^(3)-12a^(2)b+6ab^(2) (iii) 27-125a^(3)-135a+225a^(2) (iv) 64a^(3)-27b^(3)-144a^(2)b+108ab^(2) (v) 27p^(3)-(1)/(216)-(9)/(2)p^(2)+(1)/(4)p

Factorise (i) 8p^3+(12)/(5)p^2+(6)/(25)p+(1)/(125) (ii) 27p^3-(9)/(2)p^2+(1)/(4)p-(1)/(216)

Find the product (p-(1)/(p))(p+(1)/(p))(p^(2)+(1)/(p^(2)))(p^(4)+(1)/(p^(4)))

Factorised form of p ^(2) + 30 p + 216 is

Multiply the following: 4p^(2)+2p-5 by 9p^(2)-4p+2

The common factor of (p^(2) + 9p + 14) and (p^(2) + 13p + 42) is .