Home
Class 9
MATHS
Factorize: (64)/(125)x^3-8-(96)/(25)x^2+...

Factorize: `(64)/(125)x^3-8-(96)/(25)x^2+(48)/5x\ `

Text Solution

AI Generated Solution

To factorize the expression \(\frac{64}{125}x^3 - 8 - \frac{96}{25}x^2 + \frac{48}{5}x\), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \frac{64}{125}x^3 - 8 - \frac{96}{25}x^2 + \frac{48}{5}x \] We can rewrite \(\frac{64}{125}x^3\) as \(\left(\frac{4}{5}x\right)^3\) and \(8\) as \(2^3\). ...
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS OF REAL NUMBER

    RD SHARMA|Exercise All Questions|186 Videos
  • FACTORIZATION OF POLYNOMIAL

    RD SHARMA|Exercise All Questions|220 Videos

Similar Questions

Explore conceptually related problems

Factorise (64)/(125)a^3-(96)/(25)a^2+(48)/(5)a-8

Factorize : -64+25x^(2)

Factorize: x^(3)-12x(x-4)-64

Factorize 2x^3-48x

Factorize: 125+8x^(3)-27y^(3)+90xy

Factorize 3x^3-48x

(a) Factorize 27a^(3) + 125 x^(3)

Factorize: 125x^(3)-27y^(3)-225x^(2)y+135xy^(2)

Factorize: 8x^(3)-125y^(3)+180xy+216

Factorize : 64a^(3)+125b^(3)+240a^(2)b+300ab^(2)(8)/(27)x^(3)+1+(4)/(3)x^(2)+2xx^(3)+8y^(3)+6x^(2)y+12xy^(2)8a^(3)-27b^(3)-36a^(2)b+54ab^(2)x^(3)-12x(x-4)-64