Home
Class 9
MATHS
Factorize: a^3+3a^2b+3a b^2+b^3-8...

Factorize: `a^3+3a^2b+3a b^2+b^3-8`

Text Solution

Verified by Experts

Given expression
`a^3+3a2^b+3ab^2+b^3−8`
`(a+b)^3−(2)^3`
`(∵(x+y)^3=x^3 +y^3+3x^2y+3xy^2 )`
=`(a+b−2)[(a+b) ^2+2 ^2 +2(a+b)]`
`(∵'x ^3−y ^3=(x−y)(x ^2 +y^ 2+xy))`
=`(a+b−2)(a^2+b ^2 +2ab+4+2a+2b)`
`(∵'(x+y) ^2=x ^2+y ^2+xy)`
Hence,
`a ^3 +3a ^2 b+3ab^2 +b ^3−8=(a+b−2)(a ^2 +b ^2 +2ab+4+2a+2b)`.
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS OF REAL NUMBER

    RD SHARMA|Exercise All Questions|186 Videos
  • FACTORIZATION OF POLYNOMIAL

    RD SHARMA|Exercise All Questions|220 Videos

Similar Questions

Explore conceptually related problems

Factorize: a^(3)+3a^(2)b+3ab^(2)+b^(3)-8

Factorize: a^(3)-3a^(2)b+3ab^(2)-b^(3)+8

Factorize (a+b)^3-a-b

Factorize: a^(3)+b^(3)+a+b

factorize : 9a^2+3a-8b-64b^2

Find the values of the following polynomials at a = -2 and b = 3 : a^3 + 3a^2b + 3ab^2 + b^3

factorize : 108a^2-3(b-c)^2

Factorize: 8a^(3)-b^(3)-4ax+2bx

Factorize: (a-2b)^(3)-512b^(3)