Home
Class 9
MATHS
Factorize: 8/(27)x^3+1+4/3x^2+2x...

Factorize: `8/(27)x^3+1+4/3x^2+2x`

Text Solution

Verified by Experts

Given expression
`(8/(27)x^3+1+4/3x^2+2x)`
= `(2/3 x)^3 + (1)^3 + 3 ×(2/3 x)^2 × 1 + 3(1)^2 × (2/3 x)`
= `(2/3 x + 1)^3 [ Since, a^3 + b^3 + 3a^2b + 3ab^2 = (a + b)^3]`
=`(2/3x + 1)(2/3x + 1)(2/3x + 1)`
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS OF REAL NUMBER

    RD SHARMA|Exercise All Questions|186 Videos
  • FACTORIZATION OF POLYNOMIAL

    RD SHARMA|Exercise All Questions|220 Videos

Similar Questions

Explore conceptually related problems

Factorize 3x^(2)-x-4

Factorize: 8(x+y)^3-27(x-y)^3

Factorize x^4-3x^2+2 .

Factorize (2x-3)^2-8x+12 .

Factorize x^(4)-2x^(3)-9x^(2)+2x+8 using remainder theorem.

Factorize :(x+1)^(3)( ii) (x+1)^(3)+(x-1)^(3)8(x+y)^(3)-27(x-y)^(3)

Factorize : 64a^(3)+125b^(3)+240a^(2)b+300ab^(2)(8)/(27)x^(3)+1+(4)/(3)x^(2)+2xx^(3)+8y^(3)+6x^(2)y+12xy^(2)8a^(3)-27b^(3)-36a^(2)b+54ab^(2)x^(3)-12x(x-4)-64

Factorize: 8x^(3)y^(3)+27a^(3)

Factorize: 4x^(3)+20x^(2)+33x+18 given that 2x+3 is a factor

Factorize: x^(2)+8x+15 (ii) x^(4)+x^(2)+1 (iii) x^(4)+4