Home
Class 9
MATHS
Factorize: a^3-3a^2b+3a b^2-b^3+8...

Factorize: `a^3-3a^2b+3a b^2-b^3+8`

Text Solution

Verified by Experts

Given:`a³ + 3a²b + 3ab² + b³ - 8`
=`(a + b)³ - (2)^3 [(x +y)³ = x³ + y³ + 3x²y + 3xy²)]`
= `(a + b − 2)[(a + b)² + 2² + 2(a +b)] [(x^3-y³ = (x - y)(x² + y²+xy)]`
=` (a + b − 2)(a² + b² + 2ab + 4 + 2a +2b)`
Hence,
`(a³ +3a²b+ 3ab² + b³ - 8) = (a + b -2)(a² + b² + 2ab + 4 + 2a + 2b)`
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS OF REAL NUMBER

    RD SHARMA|Exercise All Questions|186 Videos
  • FACTORIZATION OF POLYNOMIAL

    RD SHARMA|Exercise All Questions|220 Videos

Similar Questions

Explore conceptually related problems

Factorize: a^(3)+3a^(2)b+3ab^(2)+b^(3)-8

Factorize: a^(3)+3a^(2)b+3ab^(2)+b^(3)-8

Factorize (a+b)^3-a-b

Factorize: a^(3)+b^(3)+a+b

Factorize a^(3)+(b-a)^(3)-b^(3) .

factorize : 9a^2+3a-8b-64b^2

Factorize: 8a^(3)-b^(3)-4ax+2bx

Factorize: 8a^(3)-27b^(3)-36a^(2)b+54ab^(2)

Factorize: a^(3)x^(3)-3a^(2)bx^(2)+3ab^(2)x-b^(3)