Home
Class 9
MATHS
Factorize: 8a^3-27 b^3-36 a^2b+54 a b^2...

Factorize: `8a^3-27 b^3-36 a^2b+54 a b^2`

Text Solution

Verified by Experts

Given:`8a³-27b^3 - 36a²b+54ab²`
According to the equation,
`(a - b)³ = a³- b³ -3ab(a - b)`
we get,
`8a³-27b³ - 36a²b + 54ab²`
using the formula we can it write it as
= `(2a)3 - (3b)³ - 3(2a)(3b)(2a - 3b)'
= '(2a - 3b)³`.
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS OF REAL NUMBER

    RD SHARMA|Exercise All Questions|186 Videos
  • FACTORIZATION OF POLYNOMIAL

    RD SHARMA|Exercise All Questions|220 Videos

Similar Questions

Explore conceptually related problems

Factorize: 8a^(3)+27b^(3)+36a^(2)b+54ab^(2)

Factorize: 8a^(3)-b^(3)-4ax+2bx

Factorize: 8a^(3)-b^(3)-12a^(2)b+6ab^(2)

Factorize: 27a^(3)+125b^(3)

Factorize: 8a^(3)+b^(3)+12a^(2)b+6ab^(2)

Factorise : a^(3) +8/27 b^(3)

Factorise: 18a ^(3) b^(3) - 27a ^(2) b^(3) + 36 a ^(3)b ^(2)

factorize : 9a^2+3a-8b-64b^2

Factorize: 64a^(3)-27b^(3)-144a^(2)b+108ab^(2)

One of the factors of a^(3) - b^(3) - a^(2)b + ab^(2) + a^(2) - b^(2) is