Home
Class 9
MATHS
Factorise : (a+b)^3+(b+c)^3+(c+a)^3-3(a+...

Factorise : `(a+b)^3+(b+c)^3+(c+a)^3-3(a+b)(b+c)(c+a)`

Text Solution

Verified by Experts

We know that
`a^3+b^3+c^3−3abc=(a+b+c)(a^2+b^2+c^2−ab−bc−ca)`
i.e. ,
`=>``(a+b)^3+(b+c)^3+(c+a)^3−3(a+b)(b+c)(c+a)=((a+b)+(b+c)+(c+a))[(a+b)^2+(b+c)^2+(c+a)^2−(a+b)(b+c)−(b+c)(c+a)−(c+a)(a+b)]`
`=>``(a+b)^3+(b+c)^3+(c+a)^3-3(a+b)(b+c)(c+a)=2(a+b+c)[a^2+b^2+c^2-ab-bc-ca]`
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS OF REAL NUMBER

    RD SHARMA|Exercise All Questions|186 Videos
  • FACTORIZATION OF POLYNOMIAL

    RD SHARMA|Exercise All Questions|220 Videos

Similar Questions

Explore conceptually related problems

Factorise a^(3)-(b-c)^(3) .

Prove that : (a+b)^(3)+(b+c)^(3)+(c+a)^(3)-3(a+b)(b+c)(c+a)=2(a^(3)+b^(3)+c^(3)-3abc)

Factorize: (a-3b)^(3)+(3b-c)^(3)+(c-a)^(3)

a^3(b-c)^3+b^3(c-a)^3+c^3(a-b)^3

If a,b,c are real and distinct nubmer , then the value of ((a -b)^(3) + (b - c)^(3) + (c -a)^(3))/((a - b)(b - c)(c - a)) is

((a-b)^(3)+(b-c)^(2)+(c-a)^(3))/(9(a-b)(b-c)(c-a))=?

.Factorise: (2a-b-c)^(3)+(2b-c-a)^(3)+(2c-a-b)^(3)

The expression (a-b)^(3)+(b-c)^(3)+(c-a)^(3) can be factorized as (a)(a-b)(b-c)(c-a)(b)3(a-b)(b-c)(c-a)(c)-3(a-b)(b-c)(c-a)(d)(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ca)