Home
Class 9
MATHS
Prove that : a^3+b^3+c^3-3a b c=1/2(a+b+...

Prove that : `a^3+b^3+c^3-3a b c=1/2(a+b+c)"{"a-b")"^2+(b-c)^2+(c-a)^2}`

Text Solution

Verified by Experts

we need to prove that the left hand side (L.H.S) of the equation is equal to right hand side (R.H.S).
Therefore R.H.S,
`=1/2(a+b+c){"a-b")"^2+(b-c)^2+(c-a)^2}`
`=1/2(a+b+c){a^2+b^2-2ab+b^2+c^2-2bc+c^2+a^2-2ac}`
`=1/2(a+b+c)2{a^2+b^2+c^2-ab-bc-ca}`
`=(a+b+c){a^2+b^2+c^2-ab-bc-ca}`
`=a^3+ab^2+ac^2-a^2b-abc-ca^2+b^3+ba^2+bc^2-b^2a-abc-cb^2+ca^2+cb^2+c^3-abc-bc^2-c^2a`
after simplification,
`=a^3+b^3+c^3-3abc`
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS OF REAL NUMBER

    RD SHARMA|Exercise All Questions|186 Videos
  • FACTORIZATION OF POLYNOMIAL

    RD SHARMA|Exercise All Questions|220 Videos

Similar Questions

Explore conceptually related problems

Prove that a^(3)+b^(3)+c^(3)-3abc=(1)/(2)(a+b+c){(a-b)^(2)+(b-c)^(2)+(c-a)^(2)}

Prove that: a^(3)+b^(3)+c^(3)-3abc=(1)/(2)(a+b+c){a-b)^(2)+(b-c)^(2)+(c-a)^(2)}

Prove: a^(3)+b^(3)+c^(3)-3abc=(1)/(2)(a+b+c){(a-b)^(2)+(b-c)^(2)+(c-a)^(2)}

If a= 25, b= 15, c= - 10 then (a^(3) + b^(3) + c^(3) - 3abc)/((a-b)^(2) + (b-c)^(2) + (c-a)^(2))

Prove: |a^3 2a b^3 2b c^3 2c|=2(a-b)(b-c)(c-a)(a+b+c)

Prove that |[a,b,c] , [a^2,b^2,c^2] , [a^3,b^3,c^3]|= abc(a-b)(b-c)(c-a)

If a statement is true for all the values of the variable, such statements are called as identities. Some basic identities are : (1) (a+b)^(2)=a^(2)+2ab+b^(2)=(a-b)^(2)+4ab (3) a^(2)-b^(2)=(a+b)(a-b) (4) (a+b)^(3)=a^(3)+b^(3)+3ab(a+b) (6) a^(3)+b^(3)=(a+b)^(3)=3ab(a+b)=(a+b) (a^(2)-ab) (8) (a+b+c)^(2)=a^(2)+b^(2)+c^(2)+2ab+2bc+2ca=a^(2)+b^(2)+c^(2)+2abc((1)/(a)+(1)/(b)+(1)/(c)) (10) a^(3)+b^(3)+c^(3)-3abc=(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ca) =1/2(a+b+c)[(a-b)^(2)+(b-c)^(2)+(c-a)^(2)] If a+b+c=0,thena^(3)+b^(3)+c^(3)=3abc If a,b, c are real and distinct numbers, then the value of ((a-b)^(3)+(b-c)^(3)+(c-a)^(3))/((a-b).(b-c).(c-a))is

Prove that |{:(1, 1, 1),(a, b, c),(a^(3), b^(3), c^(3)):}|=(a-b)(b-c)(c-a)(a+b+c)

Prove that (a+b+c)^(3) =a^(3)+b^(3)+c^(3)+3(b+c) (c+a) (a+b)

Show that |[a,b,c],[a^2,b^2,c^2],[a^3,b^3,c^3]|=abc(a-b)(b-c)(c-a)