Home
Class 9
MATHS
Factorize : p^3(q-r)^3+q^3(r-p)^3+r^3(p-...

Factorize : `p^3(q-r)^3+q^3(r-p)^3+r^3(p-q)^3`

Text Solution

Verified by Experts

We know the corollary: if `a+b+c=0` then `a^3+b^3+c^3=3abc`
Using the above corollary taking `a=p(q−r), b=q(r−p) and c=r(p−q)`,
we have `a+b+c=p(q−r)+q(r−p)+r(p−q)=pq−pr+qr−pq+pr−qr=0` then,
the equation `p^3(q−r)^3+q^3(r−p)^3+r^3(p−q)^3`
can be factorised as follows:
`p^3(q−r)^3+q^3(r−p)^3+r^3(p−q)^3=3[p(q−r)×q(r−p)×r(p−q)]=3pqr(q−r)(r−p)(p−q)`
Hence, `p^3(q−r)^3+q^3(r−p)^3+r^3(p−q)^3=3pqr(q−r)(r−p)(p−q)`
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS OF REAL NUMBER

    RD SHARMA|Exercise All Questions|186 Videos
  • FACTORIZATION OF POLYNOMIAL

    RD SHARMA|Exercise All Questions|220 Videos

Similar Questions

Explore conceptually related problems

Factorise (p-q)^3+(q-r)^3+(r-p)^3 .

Factorise : p^(3)(q-r)^(3)+q^(3)(r-p)^(3)+r^(3)(p-q)^(3)

Factorise : (p-q)^(3)+(q-r)^(3)+(r-p)^(3)

If log_p(q)+log_q(r)+log_r(p) vanishes where p,q,r are positive reals different than unity then the value of (log_p(q))^3+(log_q(r))^3+(log_r(p))^3

If p.q,r are distinct,then (q-r)x+(r-p)y+(p-q)=0 and (q^(3)-r^(3))x+(r^(3)-p^(3))y+(p^(3)-q^(3))=0 represents the same line if

If p = -2, q = - 1 and r = 3, find the value of (i) p^(2) + q^(2) - r^(2) (ii) 2p^(2) - q^(2) + 3r^(2) (iii) p - q - r (iv) p^(3) + q^(3) + r^(3) + 3 pqr (v) 3p^(2) q + 5pq^(2) + 2 pqr (vi) p^(4) + q^(4) - r^(4)

If the equation px^(3)+3qx^(2)y+3rxy^(2)+sy^(3)=0 (p,q,r,s!=0) represents three coincident lines,then (A) (p)/(q)=(q)/(r)=(r)/(s) (B) pr=qs (C) q=s (D) p=r

If a,b,c denote the sides of triangleABC , show that the value of the expression, a^3 (p-q)(p-r)+b^2(q-r)+b^2(q-r)(q-p)+c^2(r-p)(r-q) cannot be negative where p,q,r in R .