Home
Class 9
MATHS
Factorize : (x-2y)^3+(2y-3z)^3+(3z-x)^3...

Factorize : `(x-2y)^3+(2y-3z)^3+(3z-x)^3`

Text Solution

Verified by Experts

Here to factorise `(x−2y)^3+(2y−3z)^3+(3z−x)^3`, we need to assume an another equation
Therefore,
`a^3+b^3+c^3−3abc=(a+b+c)(a^2+b^2+c^2−ab+bc+ca)`.....(1)
And in the above equation is`a+b+c=0`, then`a^3+b^3+c^3=3abc` ....(2)
So, for the above question if we assume`a=(x−2y), b=(2y−3z), c=(3z−x)`
Then, `(x−2y)+(2y−3z)+(3z−x)=0` `[∵a+b+c=0]`
Therefore,
`(x−2y)^3+(2y−3z)^3+(3z−x)^3=3(x−2y)(2y−3z)(3z−x)`
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS OF REAL NUMBER

    RD SHARMA|Exercise All Questions|186 Videos
  • FACTORIZATION OF POLYNOMIAL

    RD SHARMA|Exercise All Questions|220 Videos

Similar Questions

Explore conceptually related problems

Without finding the cubes, factorise : (x-2y)^(3)+(2y-3z)^(3)+(3z-x)^(3)

Factorize :(x-y)^(3)+(y-z)^(3)+(z-x)^(3)

Factorize: (3x-2y)^(3)+(2y-4z)^(3)+(4z-3x)^(3)

Factorize: (2x-3y)^(3)+(4z-2x)^(3)+(3y-4z)^(3)

Factorize : (i)(a-b)^3+(b-c)^3+(c-a)^3 (ii) x^3(y-z)^3+y^3(z-x)^3+z^3(x-y)^3

Factorize: ((x)/(2)+y+(z)/(3))^(3)+((x)/(3)-(2y)/(3)+z)^(3)+(-(5x)/(6)-(y)/(3)-(4z)/(3))^(3)

Factors of (2x - 3y) ^(3) + ( 3y - 5z) ^(3) + ( 5z - 2x) ^(3) are:

Find ((x^(2)-y^(2))^(3) + (y^(2) -z^(2))^(3)+ (z^(2) -x^(2))^(3))/((x-y)^(3) + (y-z)^(3) + (z-x)^(3))

Factorise the expression (x+y+z)^(3)-x^(3)-y^(3)-z^(3) into linear factors