Home
Class 9
MATHS
Factorize: 27 x^3-y^3-z^3-9x y z...

Factorize: `27 x^3-y^3-z^3-9x y z`

Text Solution

Verified by Experts

The given expression `27x^³+y^³+z^³-9xyz` can be written as`(3x)^³+(y)^³+(z)^³ - 3(3x)(y)(z)`
We can write: `(3x)^³+(y)^³+(z)^²-3(3x)(y)(z)= (3x + y + z)[(3x)^²+(y)^²+(z)^²-(3x)(y)-yz-(z)(3x)]`
Hence, `27x^³+y^³+z^³-9xyz=(3x+y+z)(9x^²+y^²+z^²-3xy- yz-3zx)`
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS OF REAL NUMBER

    RD SHARMA|Exercise All Questions|186 Videos
  • FACTORIZATION OF POLYNOMIAL

    RD SHARMA|Exercise All Questions|220 Videos

Similar Questions

Explore conceptually related problems

27x^3-y^3-z^3-9xyz

Factorise: 27x^(3)+y^(3)+z^(3)-9xyz

Factorise : 27x^(3)+y^(3)+z^(3)-9xyz

Factorise (x+y)^(3)-27z^(3)

Factorize: 8x^(3)+27y^(3)+z^(3)-18xyz

Factorize: x^(3)-8y^(3)+27z^(3)+18xyz

Factorize: 8x^(3)+27y^(3)-216z^(3)+108xyz

Factorize :(x-y)^(3)+(y-z)^(3)+(z-x)^(3)

Factorize : (x-2y)^(3)+(2y-3z)^(3)+(3z-x)^(3)

Factorize: (3x-2y)^(3)+(2y-4z)^(3)+(4z-3x)^(3)