Home
Class 9
MATHS
Multiply: x^2+y^2+z^2-x y+x z+y z\ by x...

Multiply: `x^2+y^2+z^2-x y+x z+y z\ ` by `x+y-z`

Text Solution

AI Generated Solution

To solve the problem of multiplying the expression \(x^2 + y^2 + z^2 - xy + xz + yz\) by \(x + y - z\), we will follow the steps of polynomial multiplication. ### Step-by-Step Solution: 1. **Write the expressions clearly**: We have: \[ (x^2 + y^2 + z^2 - xy + xz + yz) \cdot (x + y - z) ...
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS OF REAL NUMBER

    RD SHARMA|Exercise All Questions|186 Videos
  • FACTORIZATION OF POLYNOMIAL

    RD SHARMA|Exercise All Questions|220 Videos

Similar Questions

Explore conceptually related problems

Value of [[x+y, z,z ],[x, y+z, x],[y, y, z+x]], where x ,y ,z are nonzero real number, is equal to x y z b. 2x y z c. 3x y z d. 4x y z

Show that : |x y z x^2y^2z^2x^3y^3z^3|=x y z(x-y)(y-z)(z-x)dot

What should be added to x y+y z+z x to get x y-y z-z x ? -2x y-2y z-2z x (b) -3x y-y z-z x -3x y-3y z-3z x (d) 2x y+2y z+2z x

|[y+z, x, x] , [y, z+x, y] , [z, z, x+y]|= (i) x^2y^2z^2 (ii) 4x^2y^2z^2 (iii) xyz (iv) 4xyz

8x + y + 2z = 4x + 2y + z = 1x + y + z = 2

Prove the identities: |[z, x, y],[ z^2,x^2,y^2],[z^4,x^4,y^4]|=|[x, y, z],[ x^2,y^2,z^2],[x^4,y^4,z^4]|=|[x^2,y^2,z^2],[x^4,y^4,z^4],[x, y, z]| =x y z (x-y)(y-z)(z-x)(x+y+z)

Prove that Det [[x + y + 2z, x, y], [z, y + z + 2x, y], [z, x, z + x + 2y]] = 2 (x + y + z) ^ 3

2x+8y+5z=5 x+y+z=-2 x+2y-z=2