Home
Class 12
MATHS
The shortest distance between the lines ...

The shortest distance between the lines
`vecr=(hati-hatj)+lamda(hati+2hatj-3hatk)`
and `vecr=(hati-hatj+2hatk)+mu(2hati+4hatj-5hatk)` is

A

6

B

`sqrt(5)`

C

`(6)/(sqrt(5))`

D

`6sqrt(5)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • LINE

    TARGET PUBLICATION|Exercise Critical Thinking|33 Videos
  • LINE

    TARGET PUBLICATION|Exercise Competitive Thinking|45 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • LINEAR PROGRAMMING

    TARGET PUBLICATION|Exercise Evaluation Test|11 Videos

Similar Questions

Explore conceptually related problems

The shortest distance between the lines vecr = (-hati - hatj) + lambda(2hati - hatk) and vecr = (2hati - hatj) + mu(hati + hatj -hatk) is

Find the shortest distance between the lines vecr=(hati+2hatj+hatk)+lamda(2hati+hatj+2hatk) and vecr=2hati-hatj-hatk+mu(2hati+hatj+2hatk) .

Find the angle between the line: vecr=4hati-hatj+lamda(hati+2hatj-2hatk) and vevr=hati-hatj+2hatk-mu(2hati+4hatj-4hatk)

Find the shortest distance between the following lines : (i) vecr=4hati-hatj+lambda(hati+2hatj-3hatk) and vecr=hati-hatj+2hatk+mu(2hati+4hatj-5hatk) (ii) vecr=-hati+hatj-hatk+lambda(hati+hatj-hatk) and vecr=hati-hatj+2hatk+mu(-hati+2hatj+hatk) (iii) (x-1)/(-1) = (y+2)/(1) = (z-3)/(-2) and (x-1)/(1) = (y+1)/(2) = (z+1)/(-2) (iv) (x-1)/(2) = (y-2)/(3) = (z-3)/(4) and (x-2)/(3) = (y-3)/(4) = (z-5)/(5) (v) vecr = veci+2hatj+3hatk+lambda(hati-hatj+hatk) and vecr = 2hati-hatj-hatk+mu(-hati+hatj-hatk)

Find the shortest distance between the lines vecr=3hati+5hatj+7hatk+lamda(hati-2hatj+hatk) and vecr=-hati+hatj-hatk+mu(2hati-6hatj+hatk)

Find the shrotest distance between the lines vecr = hati+hatj+ lambda(2hati-hatj+hatk) and vecr= 2hati+hatj-hatk+mu(2hati-hatj+hatk) .

The shortest distance between the lines vecr = (2hati - hatj) + lambda(2hati + hatj - 3hatk) vecr = (hati - hatj + 2hatk) + lambda(2hati + hatj - 5hatk)

If d is the shortest distance between the lines vecr =(3hati +5hatj + 7hatk)+lambda (hati +2hatj +hatk) and vecr = (-hati -hatj-hatk)+mu(7hati-6hatj+hatk) then 125d^(2) is equal to ____________.

Find the angle between the pair of line: vecr=4hati=hatj+lamda(hati=2hatj-2hatk) and vecr=hati-hatj+2hatk-mu(2hati+3hatj-4hatk)